Suppr超能文献

等离子体元激发:利用非局域效应实现有前景的生物医学应用。

Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications.

机构信息

Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia.

出版信息

J Phys Condens Matter. 2019 Aug 14;31(32):325301. doi: 10.1088/1361-648X/ab1234. Epub 2019 Mar 21.

Abstract

Metal nanoparticles (MNPs) possess optical concentration capabilities that can amplify and localize electromagnetic fields into nanometer length scales. The near-fields of MNPs can be used to tailor optical response of luminescent semiconductor quantum dots (QDs), resulting in fascinating optical phenomena. Plasmonic metaresonances (PMRs) form a class of such optical events gaining increasing popularity due to their promising prospects in sensing and switching applications. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohybrids, PMRs occur in the space/time domain. A nanohybrid experiences PMR when system parameters such as QD dipole moment, MNP-QD centre separation or submerging medium permittivity reach critical values, resulting in the plasmonically induced time delay of the effective Rabi frequency experienced by the QD asymptotically tending to infinity. Theoretical analyses of PMRs available in the literature utilize the local response approximation (LRA) which does not account for the nonlocal effects of the MNP, and neglect the MNP dependence of the QD decay and dephasing rates which hinder their applicability to QDs in the close vicinity of small MNPs. Here, we address these limitations using an approach based on the generalized nonlocal optical response (GNOR) theory which has proven to yield successful theoretical explanations of experimentally observed plasmonic phenomena. Our results indicate that, omission of the MNP nonlocal response and the associated decay/dephasing rate modifications of the QD tend to raise implications such as significant over-estimation of the QD dipole moment required to achieve PMR, under-estimation of the critical centre separation and prediction of significantly lower near-PMR QD absorption rates, in comparison to the improved GNOR based predictions. In light of our observations, we finally suggest two prospective applications of PMR based nanoswitches, namely, aptamer based in vitro cancer screening and thermoresponsive polymer based temperature sensing. To demonstrate the latter application, we develop and utilize a proof of concept (two dimensional) skin tumor model homogeneously populated by MNP-QD nanohybrids. Our simulations reveal a novel near-PMR physical phenomenon observable under perpendicular illumination, which we like to call the margin pattern reversal, where the spatial absorption pattern reverses when the near-PMR QDs switch from the bright to dark state.

摘要

金属纳米粒子 (MNPs) 具有光学浓度能力,可以将电磁场放大并局域到纳米尺度。MNPs 的近场可用于调整荧光半导体量子点 (QDs) 的光学响应,从而产生引人入胜的光学现象。等离子体元激共振 (PMRs) 形成了一类此类光学事件,由于它们在传感和开关应用中的广阔前景而越来越受欢迎。与 MNP-QD 纳米杂化物中的基本激子和等离子体共振不同,PMRs 发生在时空域中。当系统参数(如 QD 偶极矩、MNP-QD 中心分离或浸没介质介电常数)达到临界值时,纳米杂化物会经历 PMR,导致 QD 经历的有效 Rabi 频率的等离子体诱导时间延迟渐近趋于无穷大。文献中可用的 PMR 的理论分析利用了局部响应近似 (LRA),该近似不考虑 MNP 的非局部效应,并且忽略了 QD 衰减和退相速率的 MNP 依赖性,这阻碍了它们在靠近小 MNP 的 QD 中的适用性。在这里,我们使用基于广义非局域光学响应 (GNOR) 理论的方法来解决这些限制,该方法已被证明能够成功解释实验观察到的等离子体现象。我们的结果表明,省略 MNP 非局域响应以及与 QD 相关的衰减/退相速率的修改往往会导致以下含义,例如实现 PMR 所需的 QD 偶极矩的显着高估、对临界中心分离的低估以及对近 PMR QD 吸收速率的预测显著降低,与基于改进的 GNOR 的预测相比。根据我们的观察,我们最后提出了基于 PMR 的纳米开关的两个潜在应用,即基于适配体的体外癌症筛选和基于热响应聚合物的温度感应。为了证明后者的应用,我们开发并利用了一个概念验证(二维)皮肤肿瘤模型,该模型均匀地充满了 MNP-QD 纳米杂化物。我们的模拟揭示了在垂直照明下可观察到的近 PMR 物理现象,我们称之为边缘图案反转,当近 PMR QD 从亮态切换到暗态时,空间吸收图案反转。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验