Suppr超能文献

等离子体猝灭与增强:用于荧光生物传感的金属-量子点纳米杂化物

Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing.

作者信息

Hildebrandt Niko, Lim Mihye, Kim Namjun, Choi Da Yeon, Nam Jwa-Min

机构信息

Department of Chemistry, Seoul National University, Seoul 08826, South Korea.

出版信息

Chem Commun (Camb). 2023 Feb 23;59(17):2352-2380. doi: 10.1039/d2cc06178c.

Abstract

Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.

摘要

等离子体金属纳米颗粒和半导体量子点(QDs)是用于光学生物传感和生物成像的两种应用最为广泛的纳米材料。虽然它们结合用于荧光猝灭纳米表面能量转移(NSET)或福斯特共振能量转移(FRET)提供了强大的调节和放大光信号的方法且相对常见,但用于等离子体增强荧光(PEF)的金属-量子点纳米杂化物却不太普遍。一个主要原因是荧光猝灭和增强之间的竞争,这对优化距离、取向和光谱重叠以实现最大PEF构成了重大挑战。在这篇专题文章中,我们讨论不同猝灭和增强机制之间的相互作用(猝灭和增强的混合距离依赖性——“猝灭增强”),以便更好地理解开发基于金属-量子点纳米杂化物的PEF生物传感器必须克服的障碍。我们回顾了不同的纳米材料、它们在各种基于表面和溶液的设计概念中的组合以及它们的结构和光物理特性,并介绍了它们在先进光学生物传感和生物成像方面的应用,同时给出了使用金属-量子点纳米杂化物进行灵敏、选择性和通用生物分析研究及生物分子诊断的指导方针和未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验