Hapuarachchi Harini, Campaioli Francesco, Cole Jared H
ARC Center of Excellence in Exciton Science and Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, 3001, Australia.
Nanophotonics. 2022 Oct 19;11(21):4919-4927. doi: 10.1515/nanoph-2022-0429. eCollection 2022 Dec.
The nitrogen-vacancy (NV) center in diamond is very sensitive to magnetic and electric fields, strain, and temperature. In addition, it is possible to optically interrogate individual defects, making it an ideal quantum-limited sensor with nanoscale resolution. A key limitation for the application of NV sensing is the optical brightness and collection efficiency of these defects. Plasmonic resonances of metal nanoparticles have been used in a variety of applications to increase the brightness and efficiency of quantum emitters, and therefore are a promising tool to improve NV sensing. However, the interaction between NV centers and plasmonic structures is largely unexplored. In particular, the back-action between NV and plasmonic nanoparticles is nonlinear and depends on optical wavelength, nanoparticle position, and metal type. Here we present the general theory of NV-plasmonic nanoparticle interactions. We detail how the interplay between NV response, including optical and vibrational signatures, and the plasmonic response of the metal nanoparticle results in modifications to the emission spectra. Our model is able to explain quantitatively the existing experimental measurements of NV centers near metal nanoparticles. In addition, it provides a pathway to developing new plasmonic structures to improve readout efficiencies in a range of applications for the NV center. This will enable higher precision sensors, with greater bandwidth as well as new readout modalities for quantum computing and communication.
金刚石中的氮空位(NV)中心对磁场、电场、应变和温度非常敏感。此外,能够对单个缺陷进行光学探测,使其成为具有纳米级分辨率的理想量子极限传感器。NV传感应用的一个关键限制是这些缺陷的光学亮度和收集效率。金属纳米颗粒的等离子体共振已被用于各种应用中,以提高量子发射器的亮度和效率,因此是改善NV传感的一种有前途的工具。然而,NV中心与等离子体结构之间的相互作用在很大程度上尚未得到探索。特别是,NV与等离子体纳米颗粒之间的反向作用是非线性的,并且取决于光波长、纳米颗粒位置和金属类型。在这里,我们提出了NV-等离子体纳米颗粒相互作用的一般理论。我们详细阐述了NV响应(包括光学和振动特征)与金属纳米颗粒的等离子体响应之间的相互作用如何导致发射光谱的改变。我们的模型能够定量解释金属纳米颗粒附近NV中心的现有实验测量结果。此外,它为开发新的等离子体结构提供了一条途径,以提高NV中心在一系列应用中的读出效率。这将实现更高精度的传感器,具有更大的带宽以及用于量子计算和通信的新读出模式。