Mohammadi Estakhri Nasim, Edwards Brian, Engheta Nader
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Science. 2019 Mar 22;363(6433):1333-1338. doi: 10.1126/science.aaw2498.
Metastructures hold the potential to bring a new twist to the field of spatial-domain optical analog computing: migrating from free-space and bulky systems into conceptually wavelength-sized elements. We introduce a metamaterial platform capable of solving integral equations using monochromatic electromagnetic fields. For an arbitrary wave as the input function to an equation associated with a prescribed integral operator, the solution of such an equation is generated as a complex-valued output electromagnetic field. Our approach is experimentally demonstrated at microwave frequencies through solving a generic integral equation and using a set of waveguides as the input and output to the designed metastructures. By exploiting subwavelength-scale light-matter interactions in a metamaterial platform, our wave-based, material-based analog computer may provide a route to achieve chip-scale, fast, and integrable computing elements.
从自由空间和庞大的系统迁移到概念上波长尺寸的元件。我们引入了一个能够使用单色电磁场求解积分方程的超材料平台。对于作为与规定积分算子相关方程的输入函数的任意波,该方程的解作为复值输出电磁场生成。我们的方法通过求解一个通用积分方程并使用一组波导作为设计的元结构的输入和输出,在微波频率下进行了实验验证。通过利用超材料平台中亚波长尺度的光与物质相互作用,我们基于波、基于材料的模拟计算机可能为实现芯片级、快速且可集成的计算元件提供一条途径。