Sui Tan, Salvati Enrico, Zhang Hongjia, Nyaza Kirill, Senatov Fedor S, Salimon Alexei I, Korsunsky Alexander M
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
Department of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
J Adv Res. 2018 Nov 16;16:113-122. doi: 10.1016/j.jare.2018.11.002. eCollection 2019 Mar.
Polylactide (PLA)-hydroxyapatite (HAp) composite components have attracted extensive attentions for a variety of biomedical applications. This study seeks to explore how the biocompatible PLA matrix and the bioactive HAp fillers respond to thermo-mechanical environment of a PLA-HAp composite manufactured by 3D printing using Fused Filament Fabrication (FFF). The insight is obtained by synchrotron small- and wide- angle X-ray scattering (SAXS/WAXS) techniques. The thermo-mechanical cyclic loading tests (0-20 MPa, 22-56 °C) revealed strain softening (Mullins effect) of PLA-HAp composite at both room and elevated temperatures (<56 °C), which can be attributed primarily to the non-linear deformation of PLA nanometre-scale lamellar structure. In contrast, the strain softening of the PLA amorphous matrix appeared only at elevated temperatures (>50 °C) due to the increased chain mobility. Above this temperature the deformation behaviour of the soft PLA lamella changes drastically. The thermal test (0-110 °C) identified multiple crystallisation mechanisms of the PLA amorphous matrix, including reversible stress-induced large crystal formation at room temperature, reversible coupled stress-temperature-induced PLA crystal formation appearing at around 60 °C, as well as irreversible heating-induced crystallisation above 92 °C. The shape memory test (0-3.75 MPa, 0-70 °C) of the PLA-HAp composite demonstrates a fixing ratio (strain upon unloading/strain before unloading) of 65% and rather a ∼100% recovery ratio, showing an improved shape memory property. These findings provide a new framework for systematic characterisation of the thermo-mechanical response of composites, and open up ways towards improved material design and enhanced functionality for biomedical applications.
聚乳酸(PLA)-羟基磷灰石(HAp)复合部件在各种生物医学应用中引起了广泛关注。本研究旨在探索生物相容性PLA基体和生物活性HAp填料如何响应通过熔丝制造(FFF)3D打印制备的PLA-HAp复合材料的热机械环境。通过同步加速器小角和广角X射线散射(SAXS/WAXS)技术获得了相关见解。热机械循环加载试验(0-20MPa,22-56°C)表明,PLA-HAp复合材料在室温和高温(<56°C)下均出现应变软化(穆林斯效应),这主要可归因于PLA纳米级层状结构的非线性变形。相比之下,PLA非晶基体的应变软化仅在高温(>50°C)下出现,这是由于链迁移率增加所致。高于此温度,柔软的PLA薄片的变形行为会发生剧烈变化。热测试(0-110°C)确定了PLA非晶基体的多种结晶机制,包括室温下可逆应力诱导的大晶体形成、约60°C时出现的可逆耦合应力-温度诱导的PLA晶体形成,以及92°C以上不可逆加热诱导的结晶。PLA-HAp复合材料的形状记忆测试(0-3.75MPa,0-70°C)显示固定率(卸载应变/卸载前应变)为65%,恢复率相当高,约为100%,表明形状记忆性能得到了改善。这些发现为系统表征复合材料的热机械响应提供了一个新框架,并为改进生物医学应用的材料设计和增强功能开辟了道路。