Suppr超能文献

肾小球的新观点:用于高级诊断的先进显微镜检查

New Views of the Glomerulus: Advanced Microscopy for Advanced Diagnosis.

作者信息

Pullman James M

机构信息

Division of Anatomic Pathology, Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.

出版信息

Front Med (Lausanne). 2019 Mar 7;6:37. doi: 10.3389/fmed.2019.00037. eCollection 2019.

Abstract

New technologies are ready to revolutionize glomerular imaging and significantly improve or replace immunofluorescence and electron microscopy, which have driven research and diagnosis of glomerular diseases for over 50 years. Advanced forms of transmission and scanning electron microscopy have revealed the detailed spatial relationships of the glomerular basement membrane, podocytes, and endothelial cells. These may be overshadowed by super resolution microscopy (SRM), which combines the advantages of immunofluorescence and electron microscopy, offers high resolution identification of specific molecules, and images large, physiologically relevant volumes of the glomerulus. Rapidity, ease of use and low cost with some types of SRM make them potentially suitable for routine diagnosis. SRM visualizes structures below the classical diffraction limit of conventional light microscopy by adding a time variable to either the illumination of the specimen, or to the fluorescence signal emitted by it. Ensemble techniques vary illumination and include Structured Illumination Microscopy (SIM) and Stimulation Emission Depletion Microscopy (STED). Single molecule localization techniques vary the light emission by fluorescence labels in the specimen, and include Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM). Technologies such as expansion microscopy and genetic labeling can also create effective super resolution imaging by non-optical, specialized preparation techniques. All technologies require dark field fluorescence and some require computer image analysis and reconstruction. Replicating successful application in other areas of biology, SIM, STED, and STORM have visualized normal and nephrotic disease podocytes, and have confirmed their appearances to be similar to those seen by electron microscopy, but with added new information on cell configuration and protein localization. STORM has also localized podocyte cytoskeleton and adhesion proteins, and glomerular basement membrane proteins at a resolution never before possible. These pioneering efforts show the promise of super resolution microscopy, and lay the groundwork for future study and new diagnostic tools for glomerular diseases.

摘要

新技术即将彻底改变肾小球成像技术,并显著改进或取代免疫荧光和电子显微镜技术,而这两项技术在过去50多年里一直推动着肾小球疾病的研究和诊断。先进形式的透射电子显微镜和扫描电子显微镜已经揭示了肾小球基底膜、足细胞和内皮细胞的详细空间关系。然而,这些技术可能会被超分辨率显微镜(SRM)所超越,超分辨率显微镜结合了免疫荧光和电子显微镜的优点,能够对特定分子进行高分辨率识别,并对较大的、具有生理相关性的肾小球体积进行成像。某些类型的超分辨率显微镜具有快速、易用和低成本的特点,使其有可能适用于常规诊断。超分辨率显微镜通过在样本照明或样本发出的荧光信号中添加时间变量,来观察低于传统光学显微镜经典衍射极限的结构。整体技术通过改变照明来实现,包括结构照明显微镜(SIM)和受激发射损耗显微镜(STED)。单分子定位技术则通过改变样本中荧光标记的发光来实现,包括光激活定位显微镜(PALM)和随机光学重建显微镜(STORM)。诸如扩展显微镜和基因标记等技术也可以通过非光学的专门制备技术来实现有效的超分辨率成像。所有技术都需要暗场荧光,有些技术还需要计算机图像分析和重建。模仿在生物学其他领域的成功应用,SIM、STED和STORM已经对正常和肾病中的足细胞进行了成像,并证实它们的外观与电子显微镜下所见相似,但还提供了关于细胞结构和蛋白质定位的新信息。STORM还以前所未有的分辨率定位了足细胞细胞骨架和粘附蛋白以及肾小球基底膜蛋白。这些开创性工作展示了超分辨率显微镜的前景,并为未来肾小球疾病的研究和新诊断工具奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f9/6416220/1c355c2a03e9/fmed-06-00037-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验