Suppr超能文献

基于术中锥形束计算机断层扫描的脊柱自动三维分割和椎弓根螺钉建议放置的机器学习。

Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography.

机构信息

1Department of Clinical Neuroscience, Karolinska Institutet.

2Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.

出版信息

J Neurosurg Spine. 2019 Mar 22;31(1):147-154. doi: 10.3171/2018.12.SPINE181397. Print 2019 Jul 1.

Abstract

OBJECTIVE

The goal of this study was to develop and validate a system for automatic segmentation of the spine, pedicle identification, and screw path suggestion for use with an intraoperative 3D surgical navigation system.

METHODS

Cone-beam CT (CBCT) images of the spines of 21 cadavers were obtained. An automated model-based approach was used for segmentation. Using machine learning methodology, the algorithm was trained and validated on the image data sets. For measuring accuracy, surface area errors of the automatic segmentation were compared to the manually outlined reference surface on CBCT. To further test both technical and clinical accuracy, the algorithm was applied to a set of 20 clinical cases. The authors evaluated the system's accuracy in pedicle identification by measuring the distance between the user-defined midpoint of each pedicle and the automatically segmented midpoint. Finally, 2 independent surgeons performed a qualitative evaluation of the segmentation to judge whether it was adequate to guide surgical navigation and whether it would have resulted in a clinically acceptable pedicle screw placement.

RESULTS

The clinically relevant pedicle identification and automatic pedicle screw planning accuracy was 86.1%. By excluding patients with severe spinal deformities (i.e., Cobb angle > 75° and severe spinal degeneration) and previous surgeries, a success rate of 95.4% was achieved. The mean time (± SD) for automatic segmentation and screw planning in 5 vertebrae was 11 ± 4 seconds.

CONCLUSIONS

The technology investigated has the potential to aid surgeons in navigational planning and improve surgical navigation workflow while maintaining patient safety.

摘要

目的

本研究旨在开发和验证一种用于术中三维手术导航系统的脊柱自动分割、椎弓根识别和螺钉路径建议的系统。

方法

获取 21 具尸体脊柱的锥形束 CT(CBCT)图像。采用基于模型的自动方法进行分割。使用机器学习方法,在图像数据集上对算法进行训练和验证。为了测量准确性,将自动分割的表面积误差与 CBCT 上手动勾画的参考表面进行比较。为了进一步测试技术和临床准确性,将该算法应用于 20 例临床病例。作者通过测量每个椎弓根用户定义中点和自动分割中点之间的距离来评估系统在椎弓根识别中的准确性。最后,2 位独立外科医生对分割进行定性评估,以判断其是否足以指导手术导航,以及是否会导致临床可接受的椎弓根螺钉放置。

结果

临床相关的椎弓根识别和自动椎弓根螺钉规划准确率为 86.1%。排除严重脊柱畸形(即 Cobb 角>75°和严重脊柱退化)和既往手术的患者后,成功率达到 95.4%。5 个椎体的自动分割和螺钉规划的平均时间(±SD)为 11±4 秒。

结论

所研究的技术具有辅助外科医生进行导航规划和提高手术导航工作流程的潜力,同时保持患者安全。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验