Suppr超能文献

弧形支架诱导的膜形态由弧角和覆盖度决定。

Membrane Morphologies Induced by Arc-Shaped Scaffolds Are Determined by Arc Angle and Coverage.

机构信息

Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany.

Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany.

出版信息

Biophys J. 2019 Apr 2;116(7):1239-1247. doi: 10.1016/j.bpj.2019.02.017. Epub 2019 Feb 26.

Abstract

The intricate shapes of biological membranes such as tubules and membrane stacks are induced by proteins. In this article, we systematically investigate the membrane shapes induced by arc-shaped scaffolds such as proteins and protein complexes with coarse-grained modeling and simulations. We find that arc-shaped scaffolds induce membrane tubules at membrane coverages larger than a threshold of ∼40%, irrespective of their arc angle. The membrane morphologies at intermediate coverages below this tubulation threshold, in contrast, strongly depend on the arc angle. Scaffolds with arc angles of about 60°, akin to N-BAR domains, do not change the membrane shape at coverages below the tubulation threshold, whereas scaffolds with arc angles larger than about 120° induce double-membrane stacks at intermediate coverages. The scaffolds stabilize the curved membrane edges that connect the membrane stacks, as suggested for complexes of reticulon proteins. Our results provide general insights on the determinants of membrane shaping by arc-shaped scaffolds.

摘要

生物膜的复杂形状,如管状和膜堆叠,是由蛋白质诱导的。在本文中,我们使用粗粒度建模和模拟系统地研究了由弧形支架(如蛋白质和蛋白质复合物)诱导的膜形状。我们发现,弧形支架在膜覆盖度大于约 40%时会诱导管状膜,而与弧形支架的弧形角度无关。相比之下,在这个管状化阈值以下的中间覆盖度下的膜形态强烈依赖于弧形角度。具有约 60°弧形角度的支架,类似于 N-BAR 结构域,在管状化阈值以下的覆盖度下不会改变膜形状,而具有大于约 120°弧形角度的支架在中间覆盖度下会诱导双层膜堆叠。支架稳定了连接膜堆叠的弯曲膜边缘,这与网蛋白复合物的复合物一致。我们的结果提供了关于弧形支架对膜成形决定因素的一般见解。

相似文献

1
Membrane Morphologies Induced by Arc-Shaped Scaffolds Are Determined by Arc Angle and Coverage.
Biophys J. 2019 Apr 2;116(7):1239-1247. doi: 10.1016/j.bpj.2019.02.017. Epub 2019 Feb 26.
2
Which Coverages of Arc-Shaped Proteins Are Required for Membrane Tubulation?
J Phys Chem B. 2024 May 16;128(19):4735-4740. doi: 10.1021/acs.jpcb.4c01019. Epub 2024 May 5.
3
How curvature-generating proteins build scaffolds on membrane nanotubes.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11226-11231. doi: 10.1073/pnas.1606943113. Epub 2016 Sep 21.
4
Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature.
Soft Matter. 2021 Jan 14;17(2):268-275. doi: 10.1039/c9sm02476j. Epub 2020 Apr 9.
6
A Model for Shaping Membrane Sheets by Protein Scaffolds.
Biophys J. 2015 Aug 4;109(3):564-73. doi: 10.1016/j.bpj.2015.06.001.
7
Membrane structure formation induced by two types of banana-shaped proteins.
Soft Matter. 2017 Jun 7;13(22):4099-4111. doi: 10.1039/c7sm00305f.
9
Membrane-mediated interaction between strongly anisotropic protein scaffolds.
PLoS Comput Biol. 2015 Feb 24;11(2):e1004054. doi: 10.1371/journal.pcbi.1004054. eCollection 2015 Feb.
10
Closed membrane shapes with attached BAR domains subject to external force of actin filaments.
Colloids Surf B Biointerfaces. 2016 May 1;141:132-140. doi: 10.1016/j.colsurfb.2016.01.010. Epub 2016 Jan 21.

引用本文的文献

1
GTP hydrolysis triggers membrane remodeling by AMPH-1.
Sci Adv. 2025 Aug;11(31):eads9443. doi: 10.1126/sciadv.ads9443. Epub 2025 Aug 1.
2
Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization.
Sci Adv. 2022 Jul 22;8(29):eabn1440. doi: 10.1126/sciadv.abn1440. Epub 2022 Jul 20.
3
Membrane-Mediated Interactions Between Protein Inclusions.
Front Mol Biosci. 2021 Dec 22;8:811711. doi: 10.3389/fmolb.2021.811711. eCollection 2021.
4
Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization.
Nat Commun. 2021 Nov 12;12(1):6550. doi: 10.1038/s41467-021-26591-3.
5
Inducible intracellular membranes: molecular aspects and emerging applications.
Microb Cell Fact. 2020 Sep 4;19(1):176. doi: 10.1186/s12934-020-01433-x.

本文引用的文献

1
Membrane-Mediated Cooperativity of Proteins.
Annu Rev Phys Chem. 2018 Apr 20;69:521-539. doi: 10.1146/annurev-physchem-052516-050637. Epub 2018 Feb 28.
3
Long-Range Organization of Membrane-Curving Proteins.
ACS Cent Sci. 2017 Dec 27;3(12):1246-1253. doi: 10.1021/acscentsci.7b00392. Epub 2017 Nov 21.
4
Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER.
Science. 2016 Oct 28;354(6311). doi: 10.1126/science.aaf3928. Epub 2016 Oct 27.
5
How curvature-generating proteins build scaffolds on membrane nanotubes.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11226-11231. doi: 10.1073/pnas.1606943113. Epub 2016 Sep 21.
6
Shape deformation of lipid membranes by banana-shaped protein rods: Comparison with isotropic inclusions and membrane rupture.
Phys Rev E. 2016 May;93(5):052404. doi: 10.1103/PhysRevE.93.052404. Epub 2016 May 9.
7
Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane.
J Struct Biol. 2016 Jun;194(3):375-82. doi: 10.1016/j.jsb.2016.03.017. Epub 2016 Mar 22.
9
Formation of polyhedral vesicles and polygonal membrane tubes induced by banana-shaped proteins.
J Chem Phys. 2015 Dec 28;143(24):243109. doi: 10.1063/1.4931896.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验