State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.00077-19. Print 2019 May 15.
Adaptation to osmotic stress is crucial for bacterial growth and survival in changing environments. Although a large number of osmotic stress response genes have been identified in various bacterial species, how osmotic changes affect bacterial motility, biofilm formation, and colonization of host niches remains largely unknown. In this study, we report that the LrhA regulator is an osmoregulated transcription factor that directly binds to the promoters of the , , and operons and differentially regulates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production, synthesis of osmoregulated periplasmic glucans (OPGs), biofilm formation, and root colonization of the plant growth-promoting bacterium LTYR-11Z. Further, we observed that the LrhA-regulated OPGs control RcsCD-RcsB activation in a concentration-dependent manner, and a high concentration of OPGs induced by increased medium osmolarity is maintained to achieve the high level of activation of the Rcs phosphorelay, which results in enhanced EPS synthesis and decreased motility in Moreover, we showed that the osmosensing regulator OmpR directly binds to the promoter of and promotes its expression, while expression is feedback inhibited by the activated Rcs phosphorelay system. Overall, our data support a model whereby senses environmental osmolarity changes through the EnvZ-OmpR two-component system and LrhA to regulate the synthesis of OPGs, EPS production, and flagellum-dependent motility, thereby employing a hierarchical signaling cascade to control the transition between a motile lifestyle and a biofilm lifestyle. Many motile bacterial populations form surface-attached biofilms in response to specific environmental cues, including osmotic stress in a range of natural and host-related systems. However, cross talk between bacterial osmosensing, swimming, and biofilm formation regulatory networks is not fully understood. Here, we report that the pleiotropic regulator LrhA in is involved in the regulation of flagellar motility, biofilm formation, and host colonization and responds to osmotic upshift. We further show that this sensing relies on the EnvZ-OmpR two-component system that was known to detect changes in external osmotic stress. The EnvZ-OmpR-LrhA osmosensing signal transduction cascade is proposed to increase bacterial fitness under hyperosmotic conditions inside the host. Our work proposes a novel regulatory mechanism that links osmosensing and motile-sessile lifestyle transitions, which may provide new approaches to prevent or promote the formation of biofilms and host colonization in and other bacteria possessing a similar osmoregulatory mechanism.
适应渗透胁迫对于细菌在不断变化的环境中生长和存活至关重要。尽管在各种细菌物种中已经鉴定出大量的渗透胁迫反应基因,但渗透变化如何影响细菌的运动性、生物膜形成以及宿主小生境的定植仍在很大程度上未知。在这项研究中,我们报告了 LrhA 调节剂是一种受渗透压调节的转录因子,它可以直接与 、 、 和 操纵子的启动子结合,并对它们的表达进行差异调节,从而抑制运动性并促进外多糖 (EPS) 的产生、合成渗透压调节的周质聚糖 (OPGs)、生物膜形成和植物促生菌 LTYR-11Z 的根定植。此外,我们观察到 LrhA 调节的 OPGs 以浓度依赖的方式控制 RcsCD-RcsB 的激活,并且由培养基渗透压升高诱导的高浓度 OPGs 得以维持,以实现 Rcs 磷酸传递系统的高水平激活,从而导致 EPS 合成增强和运动性降低。此外,我们表明渗透压感应调节剂 OmpR 直接结合到 启动子并促进其表达,而 表达则受到激活的 Rcs 磷酸传递系统的反馈抑制。总的来说,我们的数据支持这样一种模式,即 通过 EnvZ-OmpR 双组分系统和 LrhA 感知环境渗透压变化,调节 OPGs、EPS 产生和鞭毛依赖性运动性的合成,从而采用层次信号级联来控制运动生活方式和生物膜生活方式之间的转换。许多运动性细菌种群在特定环境线索的作用下,包括在各种自然和宿主相关系统中的渗透压应激,形成附着于表面的生物膜。然而,细菌渗透压感应、游动和生物膜形成调控网络之间的串扰尚未完全了解。在这里,我们报告了 中的多效调节因子 LrhA 参与了鞭毛运动性、生物膜形成和宿主定植的调节,并对渗透压上升做出反应。我们进一步表明,这种感应依赖于已知检测外部渗透压应激变化的 EnvZ-OmpR 双组分系统。提出了 EnvZ-OmpR-LrhA 渗透压感应信号转导级联来增加宿主内高渗条件下的细菌适应性。我们的工作提出了一种新的调控机制,将渗透压感应和运动静止生活方式的转变联系起来,这可能为防止或促进生物膜和宿主定植在 及其他具有类似渗透压调节机制的细菌中的形成提供新的方法。