Suppr超能文献

年龄、性别和青春期对青少年认知和运动控制的神经效率的影响。

Effects of age, sex, and puberty on neural efficiency of cognitive and motor control in adolescents.

机构信息

Center for Health Sciences, Neuroscience Program, Biosciences Division, SRI International, Menlo Park, CA, 94025-3493, USA.

Pacific Graduate School of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA.

出版信息

Brain Imaging Behav. 2020 Aug;14(4):1089-1107. doi: 10.1007/s11682-019-00075-x.

Abstract

Critical changes in adolescence involve brain cognitive maturation of inhibitory control processes that are essential for a myriad of adult functions. Cognitive control advances into adulthood as there is more flexible integration of component processes, including inhibitory control of conflicting information, overwriting inappropriate response tendencies, and amplifying relevant responses for accurate execution. Using a modified Stroop task with fMRI, we investigated the effects of age, sex, and puberty on brain functional correlates of cognitive and motor control in 87 boys and 91 girls across the adolescent age range. Results revealed dissociable brain systems for cognitive and motor control processes, whereby adolescents flexibly adapted neural responses to control demands. Specifically, when response repetitions facilitated planning-based action selection, frontoparietal-insular regions associated with cognitive control operations were less activated, whereas cortical-pallidal-cerebellar motor regions associated with motor skill acquisition, were more activated. Attenuated middle cingulate cortex activation occurred with older adolescent age for both motor control and cognitive control with automaticity from repetition learning. Sexual dimorphism for control operations occurred in extrastriate cortices involved in visuo-attentional selection: While boys enhanced extrastriate selection processes for motor control, girls activated these regions more for cognitive control. These sex differences were attenuated with more advanced pubertal stage. Together, our findings show that brain cognitive and motor control processes are segregated, demand-specific, more efficient in older adolescents, and differ between sexes relative to pubertal development. Our findings advance our understanding of how distributed brain activity and the neurodevelopment of automaticity enhances cognitive and motor control ability in adolescence.

摘要

青春期的关键变化涉及大脑认知成熟过程中的抑制控制,这对于无数成人功能至关重要。随着认知控制的发展,大脑能够更加灵活地整合各个组成部分的过程,包括对冲突信息的抑制控制、覆盖不适当的反应倾向,以及放大相关反应以实现准确执行。我们使用修改后的 Stroop 任务和 fMRI,研究了年龄、性别和青春期对 87 名男孩和 91 名女孩在青春期范围内的认知和运动控制的大脑功能相关性的影响。结果揭示了认知和运动控制过程的分离大脑系统,青少年可以灵活地适应控制需求的神经反应。具体来说,当反应重复促进基于计划的动作选择时,与认知控制操作相关的额顶叶-岛叶区域的激活减少,而与运动技能获得相关的皮质-苍白球-小脑运动区域的激活增加。从中年扣带皮层的激活随着青少年年龄的增长而减弱,对于运动控制和认知控制,由于重复学习的自动性,这种减弱更为明显。控制操作的性二态性发生在参与视知觉选择的外侧纹状体:男孩增强了运动控制的外侧纹状体选择过程,而女孩则更激活了这些区域的认知控制。这些性别差异随着青春期阶段的推进而减弱。总之,我们的发现表明,大脑的认知和运动控制过程是分离的,具有特定的需求,在年龄较大的青少年中更有效,并且相对于青春期发育,性别之间存在差异。我们的研究结果提高了我们对分布式大脑活动和自动性的神经发育如何增强青少年认知和运动控制能力的理解。

相似文献

1
Effects of age, sex, and puberty on neural efficiency of cognitive and motor control in adolescents.
Brain Imaging Behav. 2020 Aug;14(4):1089-1107. doi: 10.1007/s11682-019-00075-x.
2
Neural systems underlying reward cue processing in early adolescence: The role of puberty and pubertal hormones.
Psychoneuroendocrinology. 2019 Apr;102:281-291. doi: 10.1016/j.psyneuen.2018.12.016. Epub 2018 Dec 13.
4
Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
Prog Brain Res. 2006;159:311-30. doi: 10.1016/S0079-6123(06)59021-1.
5
Developmental sex differences in resting state functional connectivity of amygdala sub-regions.
Neuroimage. 2015 Jul 15;115:235-44. doi: 10.1016/j.neuroimage.2015.04.013. Epub 2015 Apr 14.
6
Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex.
J Neurosci. 2016 Jun 8;36(23):6156-64. doi: 10.1523/JNEUROSCI.3874-15.2016.
8
Pubertal development underlies optimization of inhibitory control through specialization of ventrolateral prefrontal cortex.
Dev Cogn Neurosci. 2022 Dec;58:101162. doi: 10.1016/j.dcn.2022.101162. Epub 2022 Oct 14.
9
Neural activity patterns between different executive tasks are more similar in adulthood than in adolescence.
Brain Behav. 2018 Sep;8(9):e01063. doi: 10.1002/brb3.1063. Epub 2018 Jul 26.
10
Puberty suppression and executive functioning: An fMRI-study in adolescents with gender dysphoria.
Psychoneuroendocrinology. 2015 Jun;56:190-9. doi: 10.1016/j.psyneuen.2015.03.007. Epub 2015 Mar 11.

引用本文的文献

2
Lifespan trajectories of motor control and neural oscillations: A systematic review of magnetoencephalography insights.
Dev Cogn Neurosci. 2025 Apr;72:101529. doi: 10.1016/j.dcn.2025.101529. Epub 2025 Feb 9.
3
Neural mechanisms of inhibitory control in preadolescent irritability: Insights from the ABCD study.
Biol Psychol. 2024 Oct;192:108856. doi: 10.1016/j.biopsycho.2024.108856. Epub 2024 Aug 16.
4
Adverse childhood experiences, brain efficiency, and the development of pain symptoms in youth.
Eur J Pain. 2025 Jan;29(1):e4702. doi: 10.1002/ejp.4702. Epub 2024 Jul 16.
5
Identifying high school risk factors that forecast heavy drinking onset in understudied young adults.
Dev Cogn Neurosci. 2024 Aug;68:101413. doi: 10.1016/j.dcn.2024.101413. Epub 2024 Jun 26.
6
An MRI Study of Morphology, Asymmetry, and Sex Differences of Inferior Precentral Sulcus.
Brain Topogr. 2024 Sep;37(5):748-763. doi: 10.1007/s10548-024-01035-5. Epub 2024 Feb 19.
7
The impact of pubertal DHEA on the development of visuospatial oscillatory dynamics.
Hum Brain Mapp. 2022 Dec 1;43(17):5154-5166. doi: 10.1002/hbm.25991. Epub 2022 Jul 1.
8
Detecting negative valence symptoms in adolescents based on longitudinal self-reports and behavioral assessments.
J Affect Disord. 2022 Sep 1;312:30-38. doi: 10.1016/j.jad.2022.06.002. Epub 2022 Jun 8.
10
Developmental coupling of cerebral blood flow and fMRI fluctuations in youth.
Cell Rep. 2022 Mar 29;38(13):110576. doi: 10.1016/j.celrep.2022.110576.

本文引用的文献

1
Contributions of default mode network stability and deactivation to adolescent task engagement.
Sci Rep. 2018 Dec 21;8(1):18049. doi: 10.1038/s41598-018-36269-4.
2
Longitudinal trajectories of hippocampal and prefrontal contributions to episodic retrieval: Effects of age and puberty.
Dev Cogn Neurosci. 2019 Apr;36:100599. doi: 10.1016/j.dcn.2018.10.003. Epub 2018 Nov 20.
3
Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence.
Psychoneuroendocrinology. 2018 May;91:105-114. doi: 10.1016/j.psyneuen.2018.02.034. Epub 2018 Mar 8.
4
Altered Brain Developmental Trajectories in Adolescents After Initiating Drinking.
Am J Psychiatry. 2018 Apr 1;175(4):370-380. doi: 10.1176/appi.ajp.2017.17040469. Epub 2017 Oct 31.
5
Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents.
Behav Brain Res. 2018 Feb 15;338:109-117. doi: 10.1016/j.bbr.2017.10.019. Epub 2017 Oct 24.
6
Ovarian Hormones Organize the Maturation of Inhibitory Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice.
Curr Biol. 2017 Jun 19;27(12):1735-1745.e3. doi: 10.1016/j.cub.2017.05.027. Epub 2017 Jun 1.
7
Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study.
Neuroimage. 2017 Aug 15;157:695-704. doi: 10.1016/j.neuroimage.2017.01.016. Epub 2017 Apr 27.
8
Contributions of the parietal cortex to increased efficiency of planning-based action selection.
Neuropsychologia. 2017 Oct;105:135-143. doi: 10.1016/j.neuropsychologia.2017.04.024. Epub 2017 Apr 22.
10
Role of testosterone and Y chromosome genes for the masculinization of the human brain.
Hum Brain Mapp. 2017 Apr;38(4):1801-1814. doi: 10.1002/hbm.23483. Epub 2017 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验