Suppr超能文献

基于可反演神经网络的光学成像模式不确定性感知性能评估

Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks.

机构信息

Computer Assisted Medical Interventions, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 223, 69120, Heidelberg, Germany.

Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2019 Jun;14(6):997-1007. doi: 10.1007/s11548-019-01939-9. Epub 2019 Mar 22.

Abstract

PURPOSE

Optical imaging is evolving as a key technique for advanced sensing in the operating room. Recent research has shown that machine learning algorithms can be used to address the inverse problem of converting pixel-wise multispectral reflectance measurements to underlying tissue parameters, such as oxygenation. Assessment of the specific hardware used in conjunction with such algorithms, however, has not properly addressed the possibility that the problem may be ill-posed.

METHODS

We present a novel approach to the assessment of optical imaging modalities, which is sensitive to the different types of uncertainties that may occur when inferring tissue parameters. Based on the concept of invertible neural networks, our framework goes beyond point estimates and maps each multispectral measurement to a full posterior probability distribution which is capable of representing ambiguity in the solution via multiple modes. Performance metrics for a hardware setup can then be computed from the characteristics of the posteriors.

RESULTS

Application of the assessment framework to the specific use case of camera selection for physiological parameter estimation yields the following insights: (1) estimation of tissue oxygenation from multispectral images is a well-posed problem, while (2) blood volume fraction may not be recovered without ambiguity. (3) In general, ambiguity may be reduced by increasing the number of spectral bands in the camera.

CONCLUSION

Our method could help to optimize optical camera design in an application-specific manner.

摘要

目的

光学成像是一种在手术室中进行高级传感的关键技术。最近的研究表明,可以使用机器学习算法来解决将像素级多光谱反射率测量值转换为组织参数(如氧合)的逆问题。然而,评估与这些算法结合使用的特定硬件并未充分考虑到问题可能不适定的可能性。

方法

我们提出了一种评估光学成像模式的新方法,该方法对在推断组织参数时可能出现的不同类型的不确定性敏感。基于可逆变神经网络的概念,我们的框架超越了点估计,并将每个多光谱测量映射到一个完整的后验概率分布,该分布能够通过多种模式表示解的歧义。然后可以从后验特征计算硬件设置的性能指标。

结果

将评估框架应用于生理参数估计的相机选择特定用例得出以下见解:(1)从多光谱图像估计组织氧合是一个适定的问题,而(2)如果没有歧义,则可能无法恢复血容量分数。(3)通常,可以通过增加相机中的光谱带宽来减少歧义。

结论

我们的方法可以帮助以特定于应用的方式优化光学相机设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验