Suppr超能文献

为什么要谨慎解读生物医学图像分析竞赛的排名。

Why rankings of biomedical image analysis competitions should be interpreted with care.

机构信息

Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.

Centre for Intelligent Machines, McGill University, Montreal, QC, H3A0G4, Canada.

出版信息

Nat Commun. 2018 Dec 6;9(1):5217. doi: 10.1038/s41467-018-07619-7.

Abstract

International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.

摘要

国际挑战已成为验证生物医学图像分析方法的标准。鉴于它们的科学影响,令人惊讶的是,尚未对与挑战组织相关的常见实践进行批判性分析。在本文中,我们对迄今为止进行的生物医学图像分析挑战进行了全面分析。我们展示了挑战的重要性,并表明缺乏质量控制会产生严重后果。首先,由于通常只提供相关信息的一小部分,因此结果的可重复性和解释经常受到阻碍。其次,算法的排名通常对许多变量(例如用于验证的测试数据、应用的排名方案以及进行参考注释的观察者)不具有鲁棒性。为了解决这些问题,我们建议采用最佳实践指南,并确定未来要解决的开放性研究问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ca4/6284017/199be3ba79c7/41467_2018_7619_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验