Suppr超能文献

基于细胞游离尿的五miRNA 模型(pCaP)预测前列腺癌侵袭性

A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine.

机构信息

Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.

Exiqon A/S, Vedbaek, Denmark.

出版信息

Int J Cancer. 2019 Nov 1;145(9):2558-2567. doi: 10.1002/ijc.32296. Epub 2019 Apr 8.

Abstract

Improved biomarkers for prostate cancer (PC) risk stratification are urgently needed. Here, we aimed to develop a novel multimarker model for prediction of biochemical recurrence (BCR) after curatively intended radical prostatectomy (RP), based on minimally invasive sampling of blood and urine. We initially measured the levels of 45 selected miRNAs by RT-qPCR in exosome enriched cell-free urine samples collected prior to RP from 215 PC patients (Cohort 1, training). We trained a novel logistic regression model (pCaP), comprising five urine miRNAs (miR-151a-5p, miR-204-5p, miR-222-3p, miR-23b-3p and miR-331-3p) and serum prostate-specific antigen (PSA), which significantly predicted time to BCR in Cohort 1 (univariate Cox regression analysis: HR = 3.12, p < 0.001). Next, using the same exact numeric cutoff for dichotomization as trained in Cohort 1, we tested and successfully validated the prognostic potential of pCaP in two additional cohorts, including 199 (Cohort 2, HR = 2.24, p = 0.002) and 205 (Cohort 3, HR = 2.15, p = 0.004) RP patients, respectively. pCaP remained a significant predictor of BCR, also after adjustment for pathological T-stage, surgical margin status and Gleason grade group (p < 0.05 in multivariate Cox regression analysis: HR = 2.72, 1.94 and 1.83 for Cohorts 1, 2 and 3, respectively). Additionally, pCaP scores correlated positively with the established clinical risk stratification nomogram CAPRA in all three PC cohorts (Pearson's rho: 0.45, 0.39 and 0.44). Together, our results suggest that the minimally invasive pCaP model could potentially be used in the future to improve PC risk stratification and to guide more personalized treatment decisions. Further clinical validation studies are warranted.

摘要

目前迫切需要开发用于前列腺癌(PC)风险分层的改良生物标志物。在这里,我们旨在基于血液和尿液的微创取样,为根治性前列腺切除术(RP)后生化复发(BCR)的预测建立新的多标志物模型。我们最初通过 RT-qPCR 测量了 215 例 PC 患者术前采集的富含细胞外囊泡的尿液样本中 45 种选定 miRNA 的水平(队列 1,训练)。我们训练了一个新的逻辑回归模型(pCaP),包含 5 种尿液 miRNA(miR-151a-5p、miR-204-5p、miR-222-3p、miR-23b-3p 和 miR-331-3p)和血清前列腺特异性抗原(PSA),该模型可显著预测队列 1 中 BCR 的时间(单变量 Cox 回归分析:HR=3.12,p<0.001)。接下来,我们使用与在队列 1 中训练时相同的二分法数值截断值,在另外两个队列中测试并成功验证了 pCaP 的预后潜力,包括 199 例(队列 2,HR=2.24,p=0.002)和 205 例(队列 3,HR=2.15,p=0.004)RP 患者。pCaP 仍然是 BCR 的显著预测因子,即使在调整了病理 T 分期、手术切缘状态和 Gleason 分级组后(多变量 Cox 回归分析中 p<0.05:HR=2.72、1.94 和 1.83,分别为队列 1、2 和 3)。此外,pCaP 评分与所有三个 PC 队列中的既定临床风险分层 nomogram CAPRA 呈正相关(Pearson's rho:0.45、0.39 和 0.44)。综上所述,我们的研究结果表明,微创 pCaP 模型未来可能用于改善 PC 风险分层,并指导更个体化的治疗决策。需要进一步的临床验证研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验