Suppr超能文献

细胞外微泡微小RNA与成像指标改善侵袭性前列腺癌的检测:一项初步研究

Extracellular Microvesicle MicroRNAs and Imaging Metrics Improve the Detection of Aggressive Prostate Cancer: A Pilot Study.

作者信息

Avasthi Kapil K, Choi Jung W, Glushko Tetiana, Manley Brandon J, Yu Alice, Park Jong Y, Brown Joel S, Pow-Sang Julio, Gantenby Robert, Wang Liang, Balagurunathan Yoganand

机构信息

Department of Tumor Microenvironment and Metastasis, Moffitt Cancer Center, Tampa, FL 33612, USA.

Department of Diagnostic & Interventional Radiology, Moffitt Cancer Center, Tampa, FL 33612, USA.

出版信息

Cancers (Basel). 2025 Feb 27;17(5):835. doi: 10.3390/cancers17050835.

Abstract

Prostate cancer (PCa) is the most diagnosed cancer in men worldwide. Early diagnosis of the disease provides better treatment options for these patients. Recent studies have demonstrated that plasma-based extracellular vesicle microRNAs (miRNAs) are functionally linked to cancer progression, metastasis, and aggressiveness. The use of magnetic resonance imaging (MRI) as the standard of care provides an overall assessment of prostate disease. Quantitative metrics (radiomics) from the MRI provide a better evaluation of the tumor and have been shown to improve disease detection. We conducted a study on prostate cancer patients, analyzing baseline blood plasma and MRI data. Exosomes were isolated from blood plasma samples to quantify miRNAs, while MRI scans provided detailed tumor morphology. Radiomics features from MRI and miRNA expression data were integrated to develop predictive models, which were evaluated using ROC curve analysis, highlighting the multivariable model's effectiveness. Our findings indicate that the univariate feature-based model with the highest Youden's index achieved average areas under the receiver operating characteristic (ROC) curve of 0.76, 0.82, and 0.84 for miRNA, MR-T2W, and MR-ADC features, respectively, in identifying clinically aggressive (Gleason grade) disease. The multivariable feature-based model yielded an average area under the curve (AUC) of 0.88 and 0.95 using combinations of miRNA markers with imaging features in MR-ADC and MR-T2W, respectively. Our study demonstrates that combining miRNA markers with MRI-based radiomics improves the identification of clinically aggressive prostate cancer.

摘要

前列腺癌(PCa)是全球男性中诊断最多的癌症。该疾病的早期诊断为这些患者提供了更好的治疗选择。最近的研究表明,基于血浆的细胞外囊泡微小RNA(miRNAs)在功能上与癌症进展、转移和侵袭性相关。使用磁共振成像(MRI)作为标准治疗手段可对前列腺疾病进行全面评估。MRI的定量指标(影像组学)能更好地评估肿瘤,并已被证明可改善疾病检测。我们对前列腺癌患者进行了一项研究,分析基线血浆和MRI数据。从血浆样本中分离出外泌体以量化miRNAs,而MRI扫描提供详细的肿瘤形态。整合MRI的影像组学特征和miRNA表达数据以建立预测模型,并使用ROC曲线分析进行评估,突出了多变量模型的有效性。我们的研究结果表明,在识别临床侵袭性( Gleason分级)疾病时,具有最高约登指数的基于单变量特征的模型对于miRNA、MR-T2W和MR-ADC特征,在受试者工作特征(ROC)曲线下的平均面积分别为0.76、0.82和0.84。基于多变量特征的模型分别使用MR-ADC和MR-T2W中miRNA标记与影像特征的组合,曲线下平均面积(AUC)为0.88和0.95。我们的研究表明,将miRNA标记与基于MRI的影像组学相结合可改善对临床侵袭性前列腺癌的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa6/11898942/2d2c77987d83/cancers-17-00835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验