Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Colloids Surf B Biointerfaces. 2019 Jun 1;178:365-376. doi: 10.1016/j.colsurfb.2019.03.032. Epub 2019 Mar 15.
The main objective of composite science is to fabricate new materials with desired properties such as high chemical, mechanical, and/or biological performances. In this research, new conductive nanocomposites of copper metal-organic frameworks (Cu-MOF) and polypyrrole (PPy) were fabricated with the aim of exploiting the electrical conductivity of polypyrrole and the porosity of MOFs in the final products. The prepared compounds (PPy/x%Cu-MOF, x = 20, 50, and 80) were investigated by FTIR, PXRD, SEM, TEM, DLS, BET, EDS mapping, cyclic voltammetry (CV), and zeta potential (ξ) measurements. Spherical morphology was confirmed by SEM and TEM analysis. The PPy/80%Cu-MOF nanocomposite showed the highest ξ potential (-40 mV), demonstrating the stability of dispersed particles. The CV results revealed that the nanocomposites have higher capacitance in comparison to the pure materials. In vitro degradation of the as-prepared compounds in simulated body fluid (SBF) was studied by EIS (electrochemical impedance spectroscopy) and Tafel polarization tests. Furthermore, in vitro biocompatibility of the PPy/x%Cu-MOF composite was evaluated on a group of cells including 3T3 fibroblasts, MCF-7 breast cancer cells, J774.A1 macrophages and red blood cells (RBCs). Viability of 3T3 fibroblasts, MCF-7, and J774.A1 cells, by Methylthiazolyldiphenyl-tetrazolium bromide (MTT) method, was dependent on Cu-MOF percent and amount of composites. Hemolytic assay for RBCs exposed to different amounts of the PPy/x%Cu-MOF composites showed hematological toxicity less than 5% in most concentrations. In addition, to investigate pro-inflammatory activity, J774.A1 macrophages were exposed to non-toxic concentrations of the PPy/x%Cu-MOF and no significant change in the expression of two inflammatory genes COX-2 and iNOS was observed. Injection of the PPy/x%Cu-MOF (5 mg kg) into bloodstream of mice did not increase liver damage marker enzymes alanine transaminase (ALT) and aspartate transaminase (AST) level in serum 1 week post injection. Moreover, we observed slight but not significant increase in serum copper level in mice 1 week after injection. According to the results, the PPy/x%Cu-MOF nanocomposites exhibited a good in vitro and in vivo biocompatibility without inducing pro-inflammatory responses in macrophages and show promising potential for different biomedical applications such as biosensors and drug delivery. The release of curcumin from curcumin-loaded PPy/x%Cu-MOF nanocomposites was detectable in plasma of mice 4 days after administration.
复合科学的主要目标是制造具有所需性能的新材料,例如高化学、机械和/或生物性能。在这项研究中,制备了具有导电性的聚吡咯(PPy)和铜金属有机骨架(Cu-MOF)的新型导电纳米复合材料,目的是利用聚吡咯的导电性和最终产物中 MOFs 的多孔性。通过 FTIR、PXRD、SEM、TEM、DLS、BET、EDS 映射、循环伏安法(CV)和 ζ 电位(ξ)测量研究了制备的化合物(PPy/x%Cu-MOF,x=20、50 和 80)。通过 SEM 和 TEM 分析证实了球形形态。PPy/80%Cu-MOF 纳米复合材料表现出最高的 ξ 电位(-40 mV),表明分散颗粒的稳定性。CV 结果表明,纳米复合材料的电容高于纯材料。通过电化学阻抗谱(EIS)和 Tafel 极化测试研究了在模拟体液(SBF)中制备的化合物的体外降解情况。此外,通过 MTT 法评估了 PPy/x%Cu-MOF 复合材料对包括 3T3 成纤维细胞、MCF-7 乳腺癌细胞、J774.A1 巨噬细胞和红细胞(RBC)在内的一组细胞的体外生物相容性。3T3 成纤维细胞、MCF-7 和 J774.A1 细胞的活力,通过 MTT 法,取决于 Cu-MOF 的百分比和复合材料的量。暴露于不同量的 PPy/x%Cu-MOF 复合材料的 RBC 的溶血试验显示,大多数浓度下血液毒性小于 5%。此外,为了研究促炎活性,将 J774.A1 巨噬细胞暴露于无毒浓度的 PPy/x%Cu-MOF 下,未观察到 COX-2 和 iNOS 两种炎症基因表达的显著变化。将 PPy/x%Cu-MOF(5 mg kg)注入小鼠血液后,注射后 1 周血清中丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)水平未升高。此外,我们观察到注射后 1 周小鼠血清铜水平略有但无统计学意义的升高。根据结果,PPy/x%Cu-MOF 纳米复合材料表现出良好的体外和体内生物相容性,不会在巨噬细胞中引起炎症反应,并显示出在生物传感器和药物输送等不同生物医学应用中的有前景的潜力。姜黄素负载的 PPy/x%Cu-MOF 纳米复合材料在给药后 4 天可在小鼠血浆中检测到姜黄素的释放。