Suppr超能文献

基于具有代表性和局部结构保持特征嵌入的迭代局部线性映射的海马体分割。

Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding.

出版信息

IEEE Trans Med Imaging. 2019 Oct;38(10):2271-2280. doi: 10.1109/TMI.2019.2906727. Epub 2019 Mar 21.

Abstract

Hippocampus segmentation plays a significant role in mental disease diagnoses, such as Alzheimer's disease, epilepsy, and so on. Patch-based multi-atlas segmentation (PBMAS) approach is a popular method for hippocampus segmentation and has achieved a promising result. However, the PBMAS approach needs high computation cost due to registration and the segmentation accuracy is subject to the registration accuracy. In this paper, we propose a novel method based on iterative local linear mapping (ILLM) with the representative and local structure-preserved feature embedding to achieve accurate and robust hippocampus segmentation with no need for registration. In the proposed approach, semi-supervised deep autoencoder (SSDA) exploits unsupervised deep autoencoder and local structure-preserved manifold regularization to nonlinearly transform the extracted magnetic resonance (MR) patch to embedded feature manifold, whose adjacent relationship is similar to the signed distance map (SDM) patch manifold. Local linear mapping is used to preliminarily predict SDM patch corresponding to the MR patch. Subsequently, threshold segmentation generates a preliminary segmentation. The ILLM refines the segmentation result iteratively by ensuring the local constraints of embedded feature manifold and SDM patch manifold using a space-constrained dictionary update. Thus, a refined segmentation is obtained with no need for registration. The experiments on 135 subjects from ADNI dataset show that the proposed approach is superior to the state-of-the-art PBMAS and classification-based approaches with mean Dice similarity coefficients of 0.8852±0.0203 and 0.8783 ± 0.0251 for bilateral hippocampus segmentation of 1.5T and 3.0T datasets, respectively.

摘要

海马体分割在精神疾病诊断中起着重要作用,例如阿尔茨海默病、癫痫等。基于补丁的多图谱分割(PBMAS)方法是一种常用的海马体分割方法,已经取得了有希望的结果。然而,由于配准,PBMAS 方法需要较高的计算成本,并且分割精度受到配准精度的影响。在本文中,我们提出了一种基于迭代局部线性映射(ILLM)的新方法,该方法具有代表性和局部结构保持特征嵌入,可实现无需配准的准确和鲁棒的海马体分割。在提出的方法中,半监督深度自动编码器(SSDA)利用无监督深度自动编码器和局部结构保持流形正则化,将提取的磁共振(MR)补丁非线性地转换为嵌入特征流形,其相邻关系类似于有符号距离图(SDM)补丁流形。局部线性映射用于初步预测 MR 补丁对应的 SDM 补丁。随后,阈值分割通过使用空间约束字典更新来确保嵌入特征流形和 SDM 补丁流形的局部约束,从而生成初步分割。ILLM 通过迭代细化分割结果,从而获得无需配准的精细分割。来自 ADNI 数据集的 135 个受试者的实验表明,与最先进的 PBMAS 和基于分类的方法相比,该方法具有优越性,双侧海马体在 1.5T 和 3.0T 数据集上的平均 Dice 相似系数分别为 0.8852±0.0203 和 0.8783 ± 0.0251。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验