Suppr超能文献

深度学习在颞叶内侧癫痫诊断中的应用。

Deep learning for the diagnosis of mesial temporal lobe epilepsy.

机构信息

Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan.

出版信息

PLoS One. 2023 Feb 23;18(2):e0282082. doi: 10.1371/journal.pone.0282082. eCollection 2023.

Abstract

OBJECTIVE

This study aimed to enable the automatic detection of the hippocampus and diagnose mesial temporal lobe epilepsy (MTLE) with the hippocampus as the epileptogenic area using artificial intelligence (AI). We compared the diagnostic accuracies of AI and neurosurgical physicians for MTLE with the hippocampus as the epileptogenic area.

METHOD

In this study, we used an AI program to diagnose MTLE. The image sets were processed using a code written in Python 3.7.4. and analyzed using Open Computer Vision 4.5.1. The deep learning model, which was a fine-tuned VGG16 model, consisted of several layers. The diagnostic accuracies of AI and board-certified neurosurgeons were compared.

RESULTS

AI detected the hippocampi automatically and diagnosed MTLE with the hippocampus as the epileptogenic area on both T2-weighted imaging (T2WI) and fluid-attenuated inversion recovery (FLAIR) images. The diagnostic accuracies of AI based on T2WI and FLAIR data were 99% and 89%, respectively, and those of neurosurgeons based on T2WI and FLAIR data were 94% and 95%, respectively. The diagnostic accuracy of AI was statistically higher than that of board-certified neurosurgeons based on T2WI data (p = 0.00129).

CONCLUSION

The deep learning-based AI program is highly accurate and can diagnose MTLE better than some board-certified neurosurgeons. AI can maintain a certain level of output accuracy and can be a reliable assistant to doctors.

摘要

目的

本研究旨在利用人工智能(AI)实现自动检测海马体并诊断以海马体为致痫灶的内侧颞叶癫痫(MTLE)。我们比较了 AI 和神经外科医生对以海马体为致痫灶的 MTLE 的诊断准确性。

方法

本研究使用 AI 程序来诊断 MTLE。图像集使用 Python 3.7.4 编写的代码进行处理,并使用 Open Computer Vision 4.5.1 进行分析。深度学习模型是经过微调的 VGG16 模型,由几个层组成。比较了 AI 和认证神经外科医生的诊断准确性。

结果

AI 自动检测海马体,并在 T2 加权成像(T2WI)和液体衰减反转恢复(FLAIR)图像上诊断以海马体为致痫灶的 MTLE。AI 基于 T2WI 和 FLAIR 数据的诊断准确性分别为 99%和 89%,神经外科医生基于 T2WI 和 FLAIR 数据的诊断准确性分别为 94%和 95%。基于 T2WI 数据,AI 的诊断准确性明显高于认证神经外科医生(p = 0.00129)。

结论

基于深度学习的 AI 程序具有很高的准确性,可以比一些认证神经外科医生更好地诊断 MTLE。AI 可以保持一定的输出准确性,可以成为医生的可靠助手。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf5/9949622/73e531d7dd18/pone.0282082.g001.jpg

相似文献

1
Deep learning for the diagnosis of mesial temporal lobe epilepsy.
PLoS One. 2023 Feb 23;18(2):e0282082. doi: 10.1371/journal.pone.0282082. eCollection 2023.
2
Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: An MRI study.
Epilepsy Res. 2021 Dec;178:106815. doi: 10.1016/j.eplepsyres.2021.106815. Epub 2021 Nov 21.
3
5
Magnetic resonance fingerprinting of temporal lobe white matter in mesial temporal lobe epilepsy.
Ann Clin Transl Neurol. 2019 Sep;6(9):1639-1646. doi: 10.1002/acn3.50851. Epub 2019 Jul 30.
8
Detection of Lesions in Mesial Temporal Lobe Epilepsy by Using MR Fingerprinting.
Radiology. 2018 Sep;288(3):804-812. doi: 10.1148/radiol.2018172131. Epub 2018 Jun 19.
9
Combined quantitative T2 mapping and [F]FDG PET could improve lateralization of mesial temporal lobe epilepsy.
Eur Radiol. 2022 Sep;32(9):6108-6117. doi: 10.1007/s00330-022-08707-5. Epub 2022 Mar 28.
10

引用本文的文献

本文引用的文献

3
Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding.
IEEE Trans Med Imaging. 2019 Oct;38(10):2271-2280. doi: 10.1109/TMI.2019.2906727. Epub 2019 Mar 21.
6
SozRank: A new approach for localizing the epileptic seizure onset zone.
PLoS Comput Biol. 2018 Jan 30;14(1):e1005953. doi: 10.1371/journal.pcbi.1005953. eCollection 2018 Jan.
7
A fingerprint of the epileptogenic zone in human epilepsies.
Brain. 2018 Jan 1;141(1):117-131. doi: 10.1093/brain/awx306.
8
Unsupervised Learning of Spatiotemporal Interictal Discharges in Focal Epilepsy.
Neurosurgery. 2018 Oct 1;83(4):683-691. doi: 10.1093/neuros/nyx480.
10
Hippocampus Segmentation Based on Local Linear Mapping.
Sci Rep. 2017 Apr 3;7:45501. doi: 10.1038/srep45501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验