Suppr超能文献

基于磁共振成像数据的多变量模式分析对行为变异型额颞叶痴呆发展的个体预测。

Individual Prediction of Behavioral Variant Frontotemporal Dementia Development Using Multivariate Pattern Analysis of Magnetic Resonance Imaging Data.

机构信息

Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.

Amsterdam UMC, VU University Medical Center, Department of Neurology and Alzheimer Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.

出版信息

J Alzheimers Dis. 2019;68(3):1229-1241. doi: 10.3233/JAD-181004.

Abstract

BACKGROUND

Patients with behavioral variant of frontotemporal dementia (bvFTD) initially may only show behavioral and/or cognitive symptoms that overlap with other neurological and psychiatric disorders. The diagnostic accuracy is dependent on progressive symptoms worsening and frontotemporal abnormalities on neuroimaging findings. Predictive biomarkers could facilitate the early detection of bvFTD.

OBJECTIVE

To determine the prognostic accuracy of clinical and structural MRI data using a support vector machine (SVM) classification to predict the 2-year clinical follow-up diagnosis in a group of patients presenting late-onset behavioral changes.

METHODS

Data from 73 patients were included and divided into probable/definite bvFTD (n = 18), neurological (n = 28), and psychiatric (n = 27) groups based on 2-year follow-up diagnosis. Grey-matter volumes were extracted from baseline structural MRI scans. SVM classifiers were used to perform three binary classifications: bvFTD versus neurological and psychiatric, bvFTD versus neurological, and bvFTD versus psychiatric group(s), and one multi-class classification. Classification performance was determined for clinical and neuroimaging data separately and their combination using 5-fold cross-validation.

RESULTS

Accuracy of the binary classification tasks ranged from 72-82% (p < 0.001) with adequate sensitivity (67-79%), specificity (77-88%), and area-under-the-receiver-operator-curve (0.80-0.9). Multi-class accuracy ranged between 55-59% (p < 0.001). The combination of clinical and voxel-wise whole brain data showed the best performance overall.

CONCLUSION

These results show the potential for automated early confirmation of diagnosis for bvFTD using machine learning analysis of clinical and neuroimaging data in a diverse and clinically relevant sample of patients.

摘要

背景

行为变异型额颞叶痴呆(bvFTD)患者最初可能仅表现出与其他神经和精神障碍重叠的行为和/或认知症状。诊断准确性取决于进行性症状恶化和神经影像学发现的额颞叶异常。预测生物标志物可以促进 bvFTD 的早期发现。

目的

使用支持向量机(SVM)分类来确定临床和结构 MRI 数据的预后准确性,以预测一组出现迟发性行为改变的患者的 2 年临床随访诊断。

方法

纳入了 73 名患者的数据,并根据 2 年随访诊断将其分为可能/明确的 bvFTD(n=18)、神经(n=28)和精神(n=27)组。从基线结构 MRI 扫描中提取灰质体积。SVM 分类器用于执行三个二进制分类:bvFTD 与神经和精神,bvFTD 与神经,以及 bvFTD 与精神组(s),以及一个多类分类。使用 5 折交叉验证分别确定临床和神经影像学数据及其组合的分类性能。

结果

二进制分类任务的准确性范围为 72-82%(p<0.001),具有足够的敏感性(67-79%)、特异性(77-88%)和接收器操作特征曲线下面积(0.80-0.9)。多类准确率在 55-59%之间(p<0.001)。临床和体素全脑数据的组合总体上表现出最佳性能。

结论

这些结果表明,使用机器学习分析临床和神经影像学数据,在多样化且具有临床相关性的患者样本中,有可能自动早期确认 bvFTD 的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验