Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy.
Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Card. G. Panico", Tricase, Italy.
Brain Behav. 2023 Apr;13(4):e2896. doi: 10.1002/brb3.2896. Epub 2023 Mar 2.
The clinical diagnosis of behavioral variant frontotemporal dementia (bvFTD) in patients with a history of primary psychiatric disorder (PPD) is challenging. PPD shows the typical cognitive impairments observed in patients with bvFTD. Therefore, the correct identification of bvFTD onset in patients with a lifetime history of PPD is pivotal for an optimal management.
Twenty-nine patients with PPD were included in this study. After clinical and neuropsychological evaluations, 16 patients with PPD were clinically classified as bvFTD (PPD-bvFTD+), while in 13 cases clinical symptoms were associated with the typical course of the psychiatric disorder itself (PPD-bvFTD-). Voxel- and surface-based investigations were used to characterize gray matter changes. Volumetric and cortical thickness measures were used to predict the clinical diagnosis at a single-subject level using a support vector machine (SVM) classification framework. Finally, we compared classification performances of magnetic resonance imaging (MRI) data with automatic visual rating scale of frontal and temporal atrophy.
PPD-bvFTD+ showed a gray matter decrease in thalamus, hippocampus, temporal pole, lingual, occipital, and superior frontal gyri compared to PPD-bvFTD- (p < .05, family-wise error-corrected). SVM classifier showed a discrimination accuracy of 86.2% in differentiating PPD patients with bvFTD from those without bvFTD.
Our study highlights the utility of machine learning applied to structural MRI data to support the clinician in the diagnosis of bvFTD in patients with a history of PPD. Gray matter atrophy in temporal, frontal, and occipital brain regions may represent a useful hallmark for a correct identification of dementia in PPD at a single-subject level.
有精神障碍病史(PPD)的患者,其行为变异型额颞叶痴呆(bvFTD)的临床诊断具有挑战性。PPD 表现出与 bvFTD 患者观察到的典型认知障碍。因此,正确识别有 PPD 病史的患者 bvFTD 的发病,对于最佳治疗至关重要。
本研究纳入了 29 名有 PPD 病史的患者。经过临床和神经心理学评估,16 名 PPD 患者被临床诊断为 bvFTD(PPD-bvFTD+),而在 13 例中,临床症状与精神障碍本身的典型病程相关(PPD-bvFTD-)。我们使用体素和表面分析来描述灰质变化。使用支持向量机(SVM)分类框架,我们使用容积和皮质厚度测量值来预测个体水平的临床诊断。最后,我们比较了磁共振成像(MRI)数据与自动视觉评定额颞叶萎缩的分类性能。
与 PPD-bvFTD-相比,PPD-bvFTD+的丘脑、海马体、颞极、舌回、枕叶和额上回灰质减少(p<0.05,经校正的家族错误率)。SVM 分类器在区分有 bvFTD 和无 bvFTD 的 PPD 患者方面的准确率为 86.2%。
我们的研究强调了机器学习应用于结构 MRI 数据在支持临床医生对有 PPD 病史的患者进行 bvFTD 诊断方面的作用。颞叶、额叶和枕叶脑区的灰质萎缩可能是在个体水平正确识别 PPD 痴呆的有用标志。