Opto-Electronics and Measurement Techniques, University of Oulu, P.O. Box 4500, Oulu, 90014, Finland.
Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Tomsk, 634050, Russia.
Sci Rep. 2019 Mar 26;9(1):5147. doi: 10.1038/s41598-019-41643-x.
Despite extensive studies on different types of nanoparticles as potential drug carriers, the application of red blood cells (RBCs) as natural transport agents for systemic drug delivery is considered a new paradigm in modern medicine and possesses great potential. There is a lack of studies on the influence of drug carriers of different compositions on RBCs, especially regarding their potential impact on human health. Here, we apply conventional microscopy to observe the formation of RBC aggregates and optical tweezers to quantitatively assess the mutual interaction of RBCs incubated with inorganic and polymeric nanoparticles. Scanning electron microscopy is utilized for direct observation of nanoparticle localization on RBC membranes. The experiments are performed in a platelet-free blood plasma mimicking the RBC natural environment. We show that nanodiamonds influence mutual RBC interactions more antagonistically than other nanoparticles, resulting in higher aggregation forces and the formation of larger cell aggregates. In contrast, polymeric particles do not cause anomalous RBC aggregation. The results emphasize the application of optical tweezers for the direct quantitative assessment of the mutual interaction of RBCs influenced by nanomaterials.
尽管已经对不同类型的纳米颗粒作为潜在药物载体进行了广泛的研究,但将红细胞 (RBC) 作为全身药物递送的天然运输剂的应用被认为是现代医学的一个新范例,具有巨大的潜力。关于不同组成的药物载体对 RBC 的影响的研究还很少,特别是关于它们对人类健康的潜在影响。在这里,我们应用常规显微镜观察 RBC 聚集的形成,并使用光学镊子定量评估与无机和聚合纳米颗粒孵育的 RBC 之间的相互作用。扫描电子显微镜用于直接观察纳米颗粒在 RBC 膜上的定位。实验是在血小板-free 的血浆中进行的,模拟 RBC 的自然环境。我们表明,纳米金刚石比其他纳米颗粒更具拮抗作用地影响 RBC 之间的相互作用,导致更高的聚集力和更大的细胞聚集。相比之下,聚合颗粒不会引起异常的 RBC 聚集。结果强调了光学镊子在直接定量评估受纳米材料影响的 RBC 相互作用方面的应用。