Suppr超能文献

用于骨科应用的纳米结构金刚石涂层

Nanostructured diamond coatings for orthopaedic applications.

作者信息

Catledge S A, Thomas V, Vohra Y K

机构信息

University of Alabama at Birmingham, USA.

出版信息

Woodhead Publ Ser Biomater. 2013;2013:105-150. doi: 10.1533/9780857093516.2.105.

Abstract

With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties.

摘要

随着越来越多的骨科植入器械被使用,人们越来越重视陶瓷涂层技术,以减少全关节置换配对部件间的摩擦和磨损,从而改善植入物功能并延长器械使用寿命。在本章中,我们将探讨超硬碳涂层,重点是纳米结构金刚石涂层,作为金属部件的替代轴承表面。由于其极高的硬度、耐磨性、低摩擦性和生物相容性,这类涂层在生物医学植入物领域具有巨大的应用潜力。这些超硬碳涂层可通过多种技术沉积而成,从而产生多种多样的结构和性能。

相似文献

1
Nanostructured diamond coatings for orthopaedic applications.
Woodhead Publ Ser Biomater. 2013;2013:105-150. doi: 10.1533/9780857093516.2.105.
2
Nanostructured ceramics for biomedical implants.
J Nanosci Nanotechnol. 2002 Jun-Aug;2(3-4):293-312. doi: 10.1166/jnn.2002.116.
3
Preliminary tribological evaluation of nanostructured diamond coatings against ultra-high molecular weight polyethylene.
J Biomed Mater Res B Appl Biomater. 2008 Apr;85(1):140-8. doi: 10.1002/jbm.b.30926.
4
5
Diamond-like carbon coatings for orthopaedic applications: an evaluation of tribological performance.
J Mater Sci Mater Med. 1999 Feb;10(2):83-90. doi: 10.1023/a:1008916903171.
6
Multi-functional bioactive silver- and copper-doped diamond-like carbon coatings for medical implants.
Acta Biomater. 2023 Sep 1;167:54-68. doi: 10.1016/j.actbio.2023.06.037. Epub 2023 Jun 29.
7
Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.
Mater Sci Eng C Mater Biol Appl. 2016 May;62:643-55. doi: 10.1016/j.msec.2016.02.014.
8
Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.
Acta Orthop Scand Suppl. 2003 Dec;74(310):1-19. doi: 10.1080/00016470310018108.
9
Probing the Impact of Tribolayers on Enhanced Wear Resistance Behavior of Carbon-Rich Molybdenum-Based Coatings.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):26148-26161. doi: 10.1021/acsami.2c03043. Epub 2022 May 29.
10
Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings.
Sci Rep. 2016 Feb 29;6:22285. doi: 10.1038/srep22285.

引用本文的文献

1
Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology.
Pharmaceutics. 2023 Jun 9;15(6):1700. doi: 10.3390/pharmaceutics15061700.
2
Recent Advancements in Materials and Coatings for Biomedical Implants.
Gels. 2022 May 21;8(5):323. doi: 10.3390/gels8050323.
3
Carbon Nanostructures, Nanolayers, and Their Composites.
Nanomaterials (Basel). 2021 Sep 12;11(9):2368. doi: 10.3390/nano11092368.
4
Glassy carbon microneedles-new transdermal drug delivery device derived from a scalable C-MEMS process.
Microsyst Nanoeng. 2018 Dec 17;4:38. doi: 10.1038/s41378-018-0039-9. eCollection 2018.
5
Mutual interaction of red blood cells influenced by nanoparticles.
Sci Rep. 2019 Mar 26;9(1):5147. doi: 10.1038/s41598-019-41643-x.
6
Diamond thin films: giving biomedical applications a new shine.
J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0382.
7
Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.
J Control Release. 2017 Sep 10;261:62-86. doi: 10.1016/j.jconrel.2017.05.033. Epub 2017 Jun 27.
8
Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings.
J Mater Sci Mater Med. 2017 Jan;28(1):17. doi: 10.1007/s10856-016-5830-2. Epub 2016 Dec 20.
9
Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation.
Front Neurosci. 2016 Mar 8;10:87. doi: 10.3389/fnins.2016.00087. eCollection 2016.
10
A wear simulation study of nanostructured CVD diamond-on-diamond articulation involving concave/convex mating surfaces.
J Coat Technol Res. 2016 Mar;13(2):385-393. doi: 10.1007/s11998-015-9738-4. Epub 2015 Sep 30.

本文引用的文献

2
In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris.
Acta Biomater. 2012 May;8(5):1939-47. doi: 10.1016/j.actbio.2012.01.033. Epub 2012 Feb 2.
4
Synthesis and Characterization of Multilayered Diamond Coatings for Biomedical Implants.
Materials (Basel). 2011 May;4(5):857-867. doi: 10.3390/ma4050857.
5
Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants.
Physiol Res. 2011;60(3):403-17. doi: 10.33549/physiolres.932045. Epub 2011 Mar 14.
6
Improved adhesion of ultra-hard carbon films on cobalt-chromium orthopaedic implant alloy.
J Mater Sci Mater Med. 2011 Feb;22(2):307-16. doi: 10.1007/s10856-010-4207-1. Epub 2011 Jan 8.
7
Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.
J Biomed Mater Res A. 2010 Oct;95(1):129-36. doi: 10.1002/jbm.a.32821.
8
Cellular chemotaxis induced by wear particles from joint replacements.
Biomaterials. 2010 Jul;31(19):5045-50. doi: 10.1016/j.biomaterials.2010.03.046. Epub 2010 Apr 15.
9
Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering.
Macromol Biosci. 2010 Apr 8;10(4):433-44. doi: 10.1002/mabi.200900287.
10
The 5-year results of an oxidized zirconium femoral component for TKA.
Clin Orthop Relat Res. 2010 May;468(5):1258-63. doi: 10.1007/s11999-009-1109-y. Epub 2009 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验