Suppr超能文献

利用诱导多能干细胞衍生的人类神经元揭示神经发育中缺失与缺陷之间的功能联系。

Uncovering the Functional Link Between Deletions and Deficiency in Neurodevelopment Using iPSC-Derived Human Neurons.

作者信息

Huang Guanqun, Chen Shuting, Chen Xiaoxia, Zheng Jiajun, Xu Zhuoran, Doostparast Torshizi Abolfazl, Gong Siyi, Chen Qingpei, Ma Xiaokuang, Yu Jiandong, Zhou Libing, Qiu Shenfeng, Wang Kai, Shi Lingling

机构信息

Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.

Department of Basic Medical Sciences, College of Medicine - Phoenix, The University of Arizona, Phoenix, AZ, United States.

出版信息

Front Neuroanat. 2019 Mar 13;13:23. doi: 10.3389/fnana.2019.00023. eCollection 2019.

Abstract

mutations, including deletions, have been associated with autism spectrum disorders (ASD). However, the effects of loss of function on neurodevelopment remain poorly understood. Here we generated human induced pluripotent stem cells (iPSC) , followed by neuro-differentiation and lentivirus-mediated shRNA expression to evaluate how knockdown affects the neurodevelopmental process at multiple time points (up to 4 weeks). We found that knockdown impaired both early stage of neuronal development and mature neuronal function, as demonstrated by a reduction in neuronal soma size, growth cone area, neurite length and branch numbers. Notably, electrophysiology analyses showed defects in excitatory and inhibitory synaptic transmission. Furthermore, transcriptome analyses revealed that multiple biological pathways related to neuron projection, motility and regulation of neurogenesis were disrupted in cells with knockdown. In conclusion, utilizing a human iPSC-based neural induction model, this study presented combined morphological, electrophysiological and transcription evidence that support that as an intrinsic, cell autonomous factor that controls cellular function development in human neurons.

摘要

包括缺失在内的突变已与自闭症谱系障碍(ASD)相关联。然而,功能丧失对神经发育的影响仍知之甚少。在此,我们生成了人类诱导多能干细胞(iPSC),随后进行神经分化并通过慢病毒介导的短发夹RNA(shRNA)表达,以评估在多个时间点(长达4周)敲低如何影响神经发育过程。我们发现,敲低会损害神经元发育的早期阶段和成熟神经元功能,这表现为神经元胞体大小、生长锥面积、神经突长度和分支数量减少。值得注意的是,电生理学分析显示兴奋性和抑制性突触传递存在缺陷。此外,转录组分析表明,在敲低的细胞中,与神经元投射、运动和神经发生调节相关的多个生物学途径被破坏。总之,本研究利用基于人类iPSC的神经诱导模型,提供了形态学、电生理学和转录方面的综合证据,支持作为一种内在的、细胞自主因子来控制人类神经元的细胞功能发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eba/6424902/d0a0cb0be1fa/fnana-13-00023-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验