Suppr超能文献

利用统计建模方法探索自动驾驶汽车事故的机制。

Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches.

机构信息

Center for Transportation Innovation, Department of Civil and Environmental Engineering, University of Louisville, Louisville, Kentucky, United States of America.

出版信息

PLoS One. 2019 Mar 28;14(3):e0214550. doi: 10.1371/journal.pone.0214550. eCollection 2019.

Abstract

Autonomous Vehicles (AV) technology is emerging. Field tests on public roads have been on going in several states in the US as well as in Europe and Asia. During the US public road tests, crashes with AV involved happened, which becomes a concern to the public. Most previous studies on AV safety relied heavily on assessing drivers' performance and behaviors in a simulation environment and developing automated driving system performance in a closed field environment. However, contributing factors and the mechanism of AV-related crashes have not been comprehensively and quantitatively investigated due to the lack of field AV crash data. By harnessing California's Report of Traffic Collision Involving an Autonomous Vehicle Database, which includes the AV crash data from 2014 to 2018, this paper investigates by far the most current and complete AV crash database in the US using statistical modeling approaches that involve both ordinal logistic regression and CART classification tree. The quantitative analysis based on ordinal logistic regression and CART models has successfully explored the mechanism of AV-related crash, via both perspectives of crash severity and collision types. Particularly, the CART model reveals and visualize the hierarchical structure of the AV crash mechanism with knowledge of how these traffic, roadway, and environmental contributing factors can lead to crashes of various serveries and collision types. Statistical analysis results indicate that crash severity significantly increases if the AV is responsible for the crash. The highway is identified as the location where severe injuries are likely to happen. AV collision types are affected by whether the vehicle is on automated driving mode, whether the crashes involve pedestrians/cyclists, as well as the roadway environment. The method used in this research provides a proven approach to statistically analyze and understand AV safety issues. And this benefit is potential be even enhanced with an increasing sample size of AV-related crashes records in the future. The comprehensive knowledge obtained ultimately facilitates assessing and improving safety performance of automated vehicles.

摘要

自动驾驶汽车(AV)技术正在兴起。在美国的几个州以及欧洲和亚洲,已经在公共道路上进行了现场测试。在美国的公共道路测试中,与 AV 相关的撞车事故时有发生,这引起了公众的关注。以前的大多数关于 AV 安全的研究都严重依赖于在模拟环境中评估驾驶员的表现和行为,并在封闭的现场环境中开发自动驾驶系统的性能。然而,由于缺乏现场 AV 碰撞数据,AV 相关碰撞的因素和机制尚未得到全面和定量的研究。本研究利用加利福尼亚州的《涉及自动驾驶汽车的交通事故报告数据库》,该数据库包含了 2014 年至 2018 年的 AV 碰撞数据,采用涉及有序逻辑回归和 CART 分类树的统计建模方法,迄今为止调查了美国最当前和最完整的 AV 碰撞数据库。基于有序逻辑回归和 CART 模型的定量分析成功地从事故严重程度和碰撞类型两个角度探索了 AV 相关事故的机制。特别是,CART 模型揭示并可视化了 AV 碰撞机制的层次结构,以及这些交通、道路和环境因素如何导致各种严重程度和碰撞类型的事故。统计分析结果表明,如果 AV 对事故负责,事故严重程度显著增加。高速公路被确定为可能发生重伤的地点。AV 碰撞类型受到车辆是否处于自动驾驶模式、碰撞是否涉及行人和/或自行车以及道路环境的影响。本研究中使用的方法提供了一种经过验证的方法,可以对 AV 安全问题进行统计分析和理解。随着未来与 AV 相关的碰撞记录的样本量增加,这种优势可能会进一步增强。最终获得的全面知识有助于评估和提高自动驾驶车辆的安全性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验