Clinical NeuroImaging Research Core, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, MSC 1108, United States.
Clinical NeuroImaging Research Core, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, MSC 1108, United States.
Neuroimage Clin. 2019;22:101782. doi: 10.1016/j.nicl.2019.101782. Epub 2019 Mar 19.
In the United States, 13% of adults are estimated to have alcohol use disorder (AUD). Most studies examining the neurobiology of AUD treat individuals with this disorder as a homogeneous group; however, the theories of the neurocircuitry of AUD call for a quantitative and dimensional approach. Previous imaging studies find differences in brain structure, function, and resting-state connectivity in AUD, but few use a multimodal approach to understand the association between severity of alcohol use and the brain differences.
Adults (ages 22-60) with problem drinking patterns (n = 59) completed a behavioral and neuroimaging protocol at the National Institutes of Health. Alcohol severity was quantified with the Alcohol Use Disorders Identification Test (AUDIT). In a 3 T MRI scanner, participants underwent a structural MRI as well as resting-state, monetary incentive delay, and face matching fMRI scans. Machine learning was applied and trained using the neural data from MRI scanning. The model was tested for generalizability in a validation sample (n = 24).
The resting state-connectivity features model best predicted AUD severity in the naïve sample, compared to task fMRI, structural MRI, combined MRI features, or demographic features. Network connectivity features between salience network, default mode network, executive control network, and sensory networks explained 33% of the variance associated with AUDIT in this model.
These findings indicate that the neural effects of AUD vary according to severity. Our results emphasize the utility of resting state fMRI as a neuroimaging biomarker for quantitative clinical evaluation of AUD.
据估计,美国有 13%的成年人患有酒精使用障碍(AUD)。大多数研究酒精使用障碍神经生物学的研究将患有这种疾病的个体视为同质群体;然而,酒精使用障碍神经回路的理论需要一种定量和多维的方法。以前的影像学研究发现 AUD 患者的大脑结构、功能和静息状态连接存在差异,但很少有研究采用多模态方法来理解酒精使用严重程度与大脑差异之间的关联。
有问题饮酒模式的成年人(年龄 22-60 岁,n=59)在国立卫生研究院完成了行为和神经影像学方案。使用酒精使用障碍识别测试(AUDIT)来量化酒精严重程度。在 3T MRI 扫描仪中,参与者接受了结构 MRI 以及静息状态、金钱奖励延迟和面部匹配 fMRI 扫描。应用机器学习并使用 MRI 扫描的神经数据进行训练。该模型在验证样本(n=24)中进行了通用性测试。
与任务 fMRI、结构 MRI、综合 MRI 特征或人口统计学特征相比,静息状态连接特征模型在原始样本中更好地预测了 AUD 严重程度。在该模型中,默认模式网络、执行控制网络和感觉网络之间的网络连接特征解释了 AUDIT 相关的 33%的方差。
这些发现表明,AUD 的神经效应根据严重程度而有所不同。我们的结果强调了静息态 fMRI 作为 AUD 定量临床评估的神经影像学生物标志物的效用。