Suppr超能文献

使用基于治疗计划特征和直线加速器 QC 指标训练的支持向量分类器预测 VMAT 患者特定 QA 结果。

Predicting VMAT patient-specific QA results using a support vector classifier trained on treatment plan characteristics and linac QC metrics.

机构信息

Radiation Medicine Program, The Ottawa Hospital, Ottawa, Canada. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2019 Apr 29;64(9):095017. doi: 10.1088/1361-6560/ab142e.

Abstract

The use of treatment plan characteristics to predict patient-specific quality assurance (QA) measurement results has recently been reported as a strategy to help facilitate automated pre-treatment verification workflows or to provide a virtual assessment of delivery quality. The goal of this work is to investigate the potential of using treatment plan characteristics and linac performance metrics (i.e. quality control test results) in combination with machine learning techniques to predict the results of VMAT patient-specific QA measurements. Using features that describe treatment plan complexity and linac performance metrics, we trained a linear support vector classifier (SVC) to classify the results of VMAT patient-specific QA measurements. The 'targets' in this model were simple classes representing median dose difference between measured and expected dose distributions-'hot' if the median dose deviation was  >1%, 'cold' if it was  <-1%, and 'normal' if it was within  ±1%. A total of 1620 unique patient-specific QA measurements were available for model development and testing. 75% of the data were used to develop and cross-validate the model, and the remaining 25% were used for an independent assessment of model performance. For the model development phase, a recursive feature elimination (RFE) cross-validation technique was used to eliminate unimportant features. Model performance was assessed using receiver operator characteristic (ROC) curve metrics. Of the ten features found to be most predictive of patient-specific QA measurement results, half were derived from treatment plan characteristics and half from quality control (QC) metrics characterizing linac performance. The model achieved a micro-averaged area under the ROC curve of 0.93, and a macro-averaged area under the ROC curve of 0.88. This work demonstrates the potential of using both treatment plan characteristics and routine linac QC results in the development of machine learning models for VMAT patient-specific QA measurements.

摘要

使用治疗计划特征来预测患者特定的质量保证(QA)测量结果最近已被报道为一种策略,可以帮助实现自动化的治疗前验证工作流程,或提供交付质量的虚拟评估。这项工作的目的是研究使用治疗计划特征和直线加速器性能指标(即质量控制测试结果)结合机器学习技术来预测容积旋转调强(VMAT)患者特定 QA 测量结果的潜力。我们使用描述治疗计划复杂性和直线加速器性能指标的特征来训练线性支持向量分类器(SVC)来对 VMAT 患者特定 QA 测量的结果进行分类。该模型中的“目标”是简单的类别,代表测量和预期剂量分布之间的中值剂量差异——如果中值剂量偏差大于 1%,则为“热”;如果中值剂量偏差小于-1%,则为“冷”;如果在 1%以内,则为“正常”。共有 1620 个独特的患者特定 QA 测量值可用于模型开发和测试。数据的 75%用于开发和交叉验证模型,其余 25%用于模型性能的独立评估。在模型开发阶段,使用递归特征消除(RFE)交叉验证技术来消除不重要的特征。使用接收器操作特征(ROC)曲线指标评估模型性能。在对患者特定 QA 测量结果最具预测性的十个特征中,有一半来自治疗计划特征,另一半来自描述直线加速器性能的质量控制(QC)指标。该模型在 ROC 曲线下的微观平均面积为 0.93,在 ROC 曲线下的宏观平均面积为 0.88。这项工作证明了在开发容积旋转调强患者特定 QA 测量的机器学习模型时,使用治疗计划特征和常规直线加速器 QC 结果的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验