Suppr超能文献

人工智能增强的癌症放射治疗质量评估:利用直线加速器每日性能、影像组学、剂量学和计划复杂性

AI-enhanced cancer radiotherapy quality assessment: utilizing daily linac performance, radiomics, dosimetrics, and planning complexity.

作者信息

Deng Jia, Zhao Yaolin, Huang Dengdian, Zhang Qingju, Hong Ye, Wu Xiangyang

机构信息

School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, China.

Radiation Oncology Department, Shaanxi Provincial Cancer Hospital, Xi'an, China.

出版信息

Front Oncol. 2025 Mar 13;15:1503188. doi: 10.3389/fonc.2025.1503188. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to develop and validate an Informer- Convolutional Neural Network (CNN) model to predict the gamma passing rate (GPR) for patient-specific quality assurance in volumetric modulated arc therapy (VMAT), enhancing treatment safety and efficacy by integrating multiple data sources.

METHODS

Analyzing 465 VMAT treatment plans covering head & neck, chest, and abdomen, the study extracted data from 31 complexity indicators, 123 radiomics features, and 123 dosimetrics indices, along with daily linac performance data including 141 key performance indicators. A hybrid Informer-CNN architecture was used to handle both temporal and non-temporal data for predicting GPR.

RESULTS

The Informer-CNN model demonstrated superior predictive performance over traditional models like Convolutional Neural Networks (CNN), Long Short-Term Memory(LSTM), and Informer. Specifically, in the validation set, the model achieved a mean absolute error (MAE) of 0.0273 and a root mean square error (RMSE) of 0.0360 using the 3%/3mm criterion. In the test set, the MAE was 0.0327 and the RMSE was 0.0468. The model also showed high classification performance with AUC scores of 0.97 and 0.95 in test and validation sets, respectively.

CONCLUSION

The developed Informer-CNN model significantly enhances the prediction accuracy and classification of gamma passing rates in VMAT treatment plans. It facilitates early integration of daily accelerator performance data, improving the assessment and verification of treatment plans for better patient-specific quality assurance.

摘要

目的

本研究旨在开发并验证一种Informer-卷积神经网络(CNN)模型,以预测容积调强弧形放疗(VMAT)中针对特定患者的质量保证的伽马通过率(GPR),通过整合多个数据源提高治疗安全性和有效性。

方法

该研究分析了465个涵盖头颈部、胸部和腹部的VMAT治疗计划,从31个复杂性指标、123个放射组学特征和123个剂量学指标中提取数据,以及包括141个关键性能指标的每日直线加速器性能数据。采用混合Informer-CNN架构来处理时间和非时间数据以预测GPR。

结果

Informer-CNN模型在预测性能上优于传统模型,如卷积神经网络(CNN)、长短期记忆网络(LSTM)和Informer。具体而言,在验证集中,使用3%/3mm标准时,该模型的平均绝对误差(MAE)为0.0273,均方根误差(RMSE)为0.0360。在测试集中,MAE为0.0327,RMSE为0.0468。该模型在测试集和验证集中的AUC分数分别为0.97和0.95,也显示出较高的分类性能。

结论

所开发的Informer-CNN模型显著提高了VMAT治疗计划中伽马通过率的预测准确性和分类能力。它有助于每日加速器性能数据的早期整合,改善治疗计划的评估和验证,以实现更好的针对特定患者的质量保证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e204/11966416/fb2af70736fd/fonc-15-1503188-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验