Suppr超能文献

使用机器学习方法理解关键风险因素在预测慢性支气管炎症状中的重要性。

Understanding the importance of key risk factors in predicting chronic bronchitic symptoms using a machine learning approach.

机构信息

Department of Preventive Medicine, University of Southern California, 2001 N. Soto Street, MC-9234, Los Angeles, CA, 90089, USA.

出版信息

BMC Med Res Methodol. 2019 Mar 29;19(1):70. doi: 10.1186/s12874-019-0708-x.

Abstract

BACKGROUND

Chronic respiratory symptoms involving bronchitis, cough and phlegm in children are underappreciated but pose a significant public health burden. Efforts for prevention and management could be supported by an understanding of the relative importance of determinants, including environmental exposures. Thus, we aim to develop a prediction model for bronchitic symptoms.

METHODS

Schoolchildren from the population-based southern California Children's Health Study were visited annually from 2003 to 2012. Bronchitic symptoms over the prior 12 months were assessed by questionnaire. A gradient boosting model was fit using groups of risk factors (including traffic/air pollution exposures) for all children and by asthma status. Training data consisted of one observation per participant in a random study year (for 50% of participants). Validation data consisted of: (1) a random (later) year in the same participants (within-participant); (2) a random year in participants excluded from the training data (across-participant).

RESULTS

At baseline, 13.2% of children had asthma and 18.1% reported bronchitic symptoms. Models performed similarly within- and across-participant. Previous year symptoms/medication use provided much of the predictive ability (across-participant area under the receiver operating characteristic curve (AUC): 0.76 vs 0.78 for all risk factors, in all participants). Traffic/air pollution exposures added modestly to prediction as did body mass index percentile, age and parent stress.

CONCLUSIONS

Regardless of asthma status, previous symptoms were the most important predictors of current symptoms. Traffic/air pollution variables contribute modest predictive information, but impact large populations. Methods proposed here could be generalized to personalized exacerbation predictions in future longitudinal studies to support targeted prevention efforts.

摘要

背景

儿童慢性呼吸道症状(包括支气管炎、咳嗽和咳痰)未得到充分重视,但对公共卫生造成了重大负担。通过了解包括环境暴露在内的决定因素的相对重要性,可以为预防和管理工作提供支持。因此,我们旨在开发一种预测儿童支气管炎症状的模型。

方法

我们对 2003 年至 2012 年期间来自基于人群的南加州儿童健康研究的学龄儿童进行了每年一次的访问。通过问卷调查评估过去 12 个月的支气管炎症状。使用风险因素组(包括交通/空气污染暴露)为所有儿童和哮喘状态拟合梯度提升模型。训练数据由随机研究年份中每个参与者的一个观测值组成(对于 50%的参与者)。验证数据由:(1)同一参与者的随机(较晚)年份(within-participant);(2)从训练数据中排除的参与者的随机年份(across-participant)组成。

结果

在基线时,13.2%的儿童患有哮喘,18.1%的儿童报告有支气管炎症状。在 within-participant 和 across-participant 中,模型的表现相似。前一年的症状/用药情况提供了大部分预测能力(across-participant 受试者工作特征曲线下面积(AUC):所有风险因素的 0.76 与所有参与者的 0.78)。交通/空气污染暴露以及体重指数百分位数、年龄和父母压力对预测有一定的贡献。

结论

无论哮喘状态如何,前一年的症状是当前症状的最重要预测因素。交通/空气污染变量提供了适度的预测信息,但影响了大量人群。这里提出的方法可以推广到未来的纵向研究中,以支持个性化的恶化预测,从而为有针对性的预防工作提供支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验