INESC-ID, Instituto Superior Técnico, University of Lisbon, R. Alves Redol 9, 1000-029, Lisboa, Portugal.
Biotechnol J. 2019 Aug;14(8):e1800613. doi: 10.1002/biot.201800613. Epub 2019 May 27.
Developments in biotechnology are increasingly dependent on the extensive use of big data, generated by modern high-throughput instrumentation technologies, and stored in thousands of databases, public and private. Future developments in this area depend, critically, on the ability of biotechnology researchers to master the skills required to effectively integrate their own contributions with the large amounts of information available in these databases. This article offers a perspective of the relations that exist between the fields of big data and biotechnology, including the related technologies of artificial intelligence and machine learning and describes how data integration, data exploitation, and process optimization correspond to three essential steps in any future biotechnology project. The article also lists a number of application areas where the ability to use big data will become a key factor, including drug discovery, drug recycling, drug safety, functional and structural genomics, proteomics, pharmacogenetics, and pharmacogenomics, among others.
生物技术的发展越来越依赖于大数据的广泛应用,这些数据由现代高通量仪器技术产生,并存储在成千上万的公共和私人数据库中。该领域的未来发展关键取决于生物技术研究人员掌握有效整合自己的贡献与这些数据库中大量可用信息所需技能的能力。本文提供了大数据和生物技术领域之间存在的关系的视角,包括人工智能和机器学习等相关技术,并描述了数据集成、数据利用和过程优化如何对应于任何未来生物技术项目的三个基本步骤。文章还列出了一些将能够使用大数据的能力将成为关键因素的应用领域,包括药物发现、药物再利用、药物安全性、功能和结构基因组学、蛋白质组学、药物遗传学和药物基因组学等。
Biotechnol J. 2019-5-27
Annu Rev Pharmacol Toxicol. 2019-9-13
J Am Med Inform Assoc. 2024-11-1
J Chem Inf Model. 2024-3-25
Prostate Cancer Prostatic Dis. 2023-9