文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物技术、大数据和人工智能。

Biotechnology, Big Data and Artificial Intelligence.

机构信息

INESC-ID, Instituto Superior Técnico, University of Lisbon, R. Alves Redol 9, 1000-029, Lisboa, Portugal.

出版信息

Biotechnol J. 2019 Aug;14(8):e1800613. doi: 10.1002/biot.201800613. Epub 2019 May 27.


DOI:10.1002/biot.201800613
PMID:30927505
Abstract

Developments in biotechnology are increasingly dependent on the extensive use of big data, generated by modern high-throughput instrumentation technologies, and stored in thousands of databases, public and private. Future developments in this area depend, critically, on the ability of biotechnology researchers to master the skills required to effectively integrate their own contributions with the large amounts of information available in these databases. This article offers a perspective of the relations that exist between the fields of big data and biotechnology, including the related technologies of artificial intelligence and machine learning and describes how data integration, data exploitation, and process optimization correspond to three essential steps in any future biotechnology project. The article also lists a number of application areas where the ability to use big data will become a key factor, including drug discovery, drug recycling, drug safety, functional and structural genomics, proteomics, pharmacogenetics, and pharmacogenomics, among others.

摘要

生物技术的发展越来越依赖于大数据的广泛应用,这些数据由现代高通量仪器技术产生,并存储在成千上万的公共和私人数据库中。该领域的未来发展关键取决于生物技术研究人员掌握有效整合自己的贡献与这些数据库中大量可用信息所需技能的能力。本文提供了大数据和生物技术领域之间存在的关系的视角,包括人工智能和机器学习等相关技术,并描述了数据集成、数据利用和过程优化如何对应于任何未来生物技术项目的三个基本步骤。文章还列出了一些将能够使用大数据的能力将成为关键因素的应用领域,包括药物发现、药物再利用、药物安全性、功能和结构基因组学、蛋白质组学、药物遗传学和药物基因组学等。

相似文献

[1]
Biotechnology, Big Data and Artificial Intelligence.

Biotechnol J. 2019-5-27

[2]
Big Data and Artificial Intelligence Modeling for Drug Discovery.

Annu Rev Pharmacol Toxicol. 2019-9-13

[3]
m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics.

Methods. 2018-6-8

[4]
Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.

Mol Divers. 2021-8

[5]
Big Data, Machine Learning, and Artificial Intelligence to Advance Cancer Care: Opportunities and Challenges.

Semin Oncol Nurs. 2023-6

[6]
Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.

Curr Top Med Chem. 2022

[7]
From cancer big data to treatment: Artificial intelligence in cancer research.

J Gene Med. 2024-1

[8]
Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine.

Comput Biol Med. 2023-8

[9]
Protein-DNA/RNA interactions: Machine intelligence tools and approaches in the era of artificial intelligence and big data.

Proteomics. 2022-4

[10]
Advances in Machine Learning Processing of Big Data from Disease Diagnosis Sensors.

ACS Sens. 2024-3-22

引用本文的文献

[1]
Machine learning models for prediction of lymph node metastasis in patients with gastric cancer: a Chinese single-centre study with external validation in an Asian American population.

BMJ Open. 2025-3-25

[2]
Construction and validation of machine learning models for predicting lymph node metastasis in cutaneous malignant melanoma: a large population-based study.

Transl Cancer Res. 2025-2-28

[3]
Construction and validation of a nomogram model for lymph node metastasis of stage II-III gastric cancer based on machine learning algorithms.

Front Oncol. 2024-10-8

[4]
Artificial intelligence for optimizing recruitment and retention in clinical trials: a scoping review.

J Am Med Inform Assoc. 2024-11-1

[5]
Classification and prediction of drought and salinity stress tolerance in barley using GenPhenML.

Sci Rep. 2024-7-29

[6]
Artificial intelligence tools for optimising recruitment and retention in clinical trials: a scoping review protocol.

BMJ Open. 2024-3-19

[7]
Implementation of IFPTML Computational Models in Drug Discovery Against Flaviviridae Family.

J Chem Inf Model. 2024-3-25

[8]
A primer on the use of machine learning to distil knowledge from data in biological psychiatry.

Mol Psychiatry. 2024-2

[9]
An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture.

Biology (Basel). 2023-9-30

[10]
The predictive value of machine learning and nomograms for lymph node metastasis of prostate cancer: a systematic review and meta-analysis.

Prostate Cancer Prostatic Dis. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索