Cui Feifei, Zhang Zilong, Cao Chen, Zou Quan, Chen Dong, Su Xi
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
Proteomics. 2022 Apr;22(8):e2100197. doi: 10.1002/pmic.202100197. Epub 2022 Feb 13.
With the development of artificial intelligence (AI) technologies and the availability of large amounts of biological data, computational methods for proteomics have undergone a developmental process from traditional machine learning to deep learning. This review focuses on computational approaches and tools for the prediction of protein-DNA/RNA interactions using machine intelligence techniques. We provide an overview of the development progress of computational methods and summarize the advantages and shortcomings of these methods. We further compiled applications in tasks related to the protein-DNA/RNA interactions, and pointed out possible future application trends. Moreover, biological sequence-digitizing representation strategies used in different types of computational methods are also summarized and discussed.
随着人工智能(AI)技术的发展以及大量生物数据的可得性,蛋白质组学的计算方法经历了从传统机器学习到深度学习的发展过程。本综述重点关注使用机器智能技术预测蛋白质 - DNA/RNA相互作用的计算方法和工具。我们概述了计算方法的发展进程,总结了这些方法的优缺点。我们进一步汇编了与蛋白质 - DNA/RNA相互作用相关任务中的应用,并指出了未来可能的应用趋势。此外,还总结并讨论了不同类型计算方法中使用的生物序列数字化表示策略。