Buckley Aya K, Lee Michelle, Cheng Tao, Kazantsev Roman V, Larson David M, Goddard William A, Toste F Dean, Toma Francesca M
Department of Chemistry , University of California , Berkeley , California 94720 , United States.
Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.
J Am Chem Soc. 2019 May 8;141(18):7355-7364. doi: 10.1021/jacs.8b13655. Epub 2019 Apr 29.
The limited selectivity of existing CO reduction catalysts and rising levels of CO in the atmosphere necessitate the identification of specific structure-reactivity relationships to inform catalyst development. Herein, we develop a predictive framework to tune the selectivity of CO reduction on Cu by examining a series of polymeric and molecular modifiers. We find that protic species enhance selectivity for H, hydrophilic species enhance formic acid formation, and cationic hydrophobic species enhance CO selectivity. ReaxFF reactive molecular dynamics simulations indicate that the hydrophilic/hydrophobic modifiers influence the formation of surface hydrides, which yield formic acid or H. These observations offer insights into how these modifiers influence catalytic behavior at the non-precious Cu surface and may aid in the future implementation of organic structures in CO reduction devices.
现有一氧化碳还原催化剂的选择性有限以及大气中一氧化碳水平的不断上升,使得确定特定的结构-反应性关系以指导催化剂开发成为必要。在此,我们通过研究一系列聚合物和分子改性剂,开发了一个预测框架来调节铜上一氧化碳还原的选择性。我们发现质子物种提高了对氢气的选择性,亲水性物种促进甲酸的形成,而阳离子疏水物种提高一氧化碳的选择性。ReaxFF反应分子动力学模拟表明,亲水性/疏水性改性剂影响表面氢化物的形成,进而产生甲酸或氢气。这些观察结果为这些改性剂如何影响非贵金属铜表面的催化行为提供了见解,并可能有助于未来在一氧化碳还原装置中实施有机结构。