Suppr超能文献

弥合纤维素酶中单分子行为与体相水解性质之间的微观-宏观差距。

Bridging the Micro-Macro Gap between Single-Molecular Behavior and Bulk Hydrolysis Properties of Cellulase.

机构信息

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

出版信息

Phys Rev Lett. 2019 Mar 8;122(9):098102. doi: 10.1103/PhysRevLett.122.098102.

Abstract

The microscopic kinetics of enzymes at the single-molecule level often deviate considerably from those expected from bulk biochemical experiments. Here, we propose a coarse-grained-model approach to bridge this gap, focusing on the unexpectedly slow bulk hydrolysis of crystalline cellulose by cellulase, which constitutes a major obstacle to mass production of biofuels and biochemicals. Building on our previous success in tracking the movements of single molecules of cellulase on crystalline cellulose, we develop a mathematical description of the collective motion and function of enzyme molecules hydrolyzing the surface of cellulose. Model simulations robustly explained the experimental findings at both the microscopic and macroscopic levels and revealed a hitherto-unknown mechanism causing a considerable slowdown of the reaction, which we call the crowding-out effect. The size of the cellulase molecule impacted significantly on the collective dynamics, whereas the rate of molecular motion on the surface did not.

摘要

在单分子水平上,酶的微观动力学通常与从批量生化实验中预期的动力学有很大的不同。在这里,我们提出了一种粗粒模型方法来弥合这一差距,重点关注纤维素酶对结晶纤维素的意外缓慢的批量水解,这是生物燃料和生物化学产品大规模生产的主要障碍。基于我们之前在跟踪结晶纤维素上单个纤维素酶分子运动方面的成功,我们开发了一种对酶分子在纤维素表面水解的集体运动和功能的数学描述。模型模拟在微观和宏观层面上都稳健地解释了实验结果,并揭示了一种迄今为止未知的导致反应明显减慢的机制,我们称之为排挤效应。纤维素酶分子的大小对集体动力学有显著影响,而分子在表面上的运动速度则没有。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验