Suppr超能文献

里氏木霉纤维二糖水解酶Cel6A及其结构域在结晶纤维素上的结合、持续运动和解离的单分子成像分析

Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose.

作者信息

Nakamura Akihiko, Tasaki Tomoyuki, Ishiwata Daiki, Yamamoto Mayuko, Okuni Yasuko, Visootsat Akasit, Maximilien Morice, Noji Hiroyuki, Uchiyama Taku, Samejima Masahiro, Igarashi Kiyohiko, Iino Ryota

机构信息

From the Okazaki Institute for Integrative Bioscience and.

the Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan.

出版信息

J Biol Chem. 2016 Oct 21;291(43):22404-22413. doi: 10.1074/jbc.M116.752048. Epub 2016 Sep 8.

Abstract

Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose I The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30-40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose.

摘要

里氏木霉Cel6A(TrCel6A)是一种纤维二糖水解酶,可将结晶纤维素水解为纤维二糖。在此,我们直接观察了完整的单分子TrCel6A、分离的催化结构域(CD)、纤维素结合模块(CBM)以及CBM与连接子(CBM-连接子)在结晶纤维素I上的反应循环(结合、表面移动和解离)。CBM-连接子的结合速率常数几乎是完整TrCel6A的一半,而CD和CBM的结合速率常数仅为完整TrCel6A的十分之一。这些结果表明,糖基化的连接子区域在结晶纤维素的初始结合中起很大作用。结合后,所有样品均显示出缓慢和快速解离,这可能是由于纤维素表面的异质性导致的两种不同结合状态引起的。CBM对高亲和力位点的特异性远高于低亲和力位点,而CD则不然,这表明CBM将CD引导至结晶纤维素的疏水表面。在纤维素表面,完整分子显示出缓慢的连续移动(8.8±5.5 nm/s)和快速的扩散移动(30 - 40 nm/s),而CBM-连接子、CD和催化无活性的全长突变体仅显示快速的扩散移动。这些结果表明,直接结合和表面扩散都有助于寻找纤维素链的可水解点。连续移动的持续时间常数为7.7 s,持续性估计为68±42。我们的结果揭示了每个结构域在反应循环基本步骤中的作用,并提供了TrCel6A在结晶纤维素上连续移动的首个直接证据。

相似文献

2
Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases.
J Biol Chem. 2020 Oct 23;295(43):14606-14617. doi: 10.1074/jbc.RA120.014792. Epub 2020 Aug 18.
3
Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei.
FEBS J. 2018 Dec;285(23):4482-4493. doi: 10.1111/febs.14668. Epub 2018 Oct 17.
5
High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose.
J Biol Chem. 2009 Dec 25;284(52):36186-36190. doi: 10.1074/jbc.M109.034611. Epub 2009 Oct 26.
6
Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.
J Biol Chem. 2016 Dec 9;291(50):26013-26023. doi: 10.1074/jbc.M116.756007. Epub 2016 Oct 25.
10
Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface.
Protein Eng Des Sel. 2007 Apr;20(4):179-87. doi: 10.1093/protein/gzm010. Epub 2007 Apr 12.

引用本文的文献

1
Are cellulases slow? Kinetic and thermodynamic limitations for enzymatic breakdown of cellulose.
BBA Adv. 2024 Dec 6;7:100128. doi: 10.1016/j.bbadva.2024.100128. eCollection 2025.
2
Thermobifida fusca Cel6B moves bidirectionally while processively degrading cellulose.
Biotechnol Biofuels Bioprod. 2024 Dec 4;17(1):140. doi: 10.1186/s13068-024-02588-0.
3
Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part II. Structural Analysis of Thermotolerant Mutant from the Basidiomycete .
J Appl Glycosci (1999). 2024 May 20;71(2):63-72. doi: 10.5458/jag.jag.JAG-2023_0018. eCollection 2024.
4
A novel accessory protein ArCel5 from cellulose-gelatinizing fungus Arthrobotrys sp. CX1.
Bioresour Bioprocess. 2022 Mar 21;9(1):27. doi: 10.1186/s40643-022-00519-1.
5
Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data.
J Phys Chem B. 2024 Jan 25;128(3):635-647. doi: 10.1021/acs.jpcb.3c05697. Epub 2024 Jan 16.
6
Engineering cellulases for conversion of lignocellulosic biomass.
Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzad002.
7
Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules.
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2117467119. doi: 10.1073/pnas.2117467119. Epub 2022 Oct 10.
8
Fungal cellulases: protein engineering and post-translational modifications.
Appl Microbiol Biotechnol. 2022 Jan;106(1):1-24. doi: 10.1007/s00253-021-11723-y. Epub 2021 Dec 10.
9
Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose.
ACS Catal. 2021 Nov 5;11(21):13530-13542. doi: 10.1021/acscatal.1c03465. Epub 2021 Oct 25.

本文引用的文献

1
Direct observation of intermediate states during the stepping motion of kinesin-1.
Nat Chem Biol. 2016 Apr;12(4):290-7. doi: 10.1038/nchembio.2028. Epub 2016 Feb 29.
3
Fungal cellulases.
Chem Rev. 2015 Feb 11;115(3):1308-448. doi: 10.1021/cr500351c. Epub 2015 Jan 28.
4
Torque generation of Enterococcus hirae V-ATPase.
J Biol Chem. 2014 Nov 7;289(45):31212-23. doi: 10.1074/jbc.M114.598177. Epub 2014 Sep 25.
6
Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose.
J Am Chem Soc. 2014 Mar 26;136(12):4584-92. doi: 10.1021/ja4119994. Epub 2014 Mar 14.
7
Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
J Biol Chem. 2013 Nov 8;288(45):32700-32707. doi: 10.1074/jbc.M113.506329. Epub 2013 Oct 2.
9
Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14646-51. doi: 10.1073/pnas.1309106110. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验