Bommarius Andreas S, Katona Adrian, Cheben Sean E, Patel Arpit S, Ragauskas Arthur J, Knudson Kristina, Pu Yunqiao
School of Chemical and Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA.
Metab Eng. 2008 Nov;10(6):370-81. doi: 10.1016/j.ymben.2008.06.008. Epub 2008 Jul 1.
Microcrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control. Adsorption of both cellulase and beta-glucosidase on cellulose is significant and also strongly depends on the wall material of the reactor. The conversion-time behavior of all four states of Avicel was found to be very similar. Jamming of adjacent cellulase enzymes when adsorbed on microcrystalline cellulose surface is evident at higher concentrations of enzyme, beyond 400 U/L cellulase/8 kU/L beta-glucosidase. Jamming explains the observed and well-known dramatically slowing rate of cellulose hydrolysis at high degrees of conversion. In contrast to the enzyme concentration, neither the method of pretreatment nor the presence or absence of presumed fractal kinetics has an effect on the calculated jamming parameter for cellulose hydrolysis.
微晶纤维素(微晶纤维素)在暴露于纤维素酶混合物(纤维素酶)之前,先进行了三种不同的预处理(酸、碱和有机溶剂处理)。添加β-葡萄糖苷酶以避免众所周知的纤维二糖对纤维素酶的抑制作用,当活性单位比(β-葡萄糖苷酶/纤维素酶)达到20时,可显著加速纤维素水解。与未处理的对照相比,发现微晶纤维素的所有预处理方案均使其结晶度略有增加。纤维素酶和β-葡萄糖苷酶在纤维素上的吸附都很显著,并且还强烈依赖于反应器的壁材料。发现微晶纤维素的所有四种状态的转化时间行为非常相似。当酶浓度高于400 U/L纤维素酶/8 kU/Lβ-葡萄糖苷酶时,吸附在微晶纤维素表面的相邻纤维素酶明显发生堵塞。堵塞解释了在高转化率下观察到的、众所周知的纤维素水解速率急剧减慢的现象。与酶浓度不同,预处理方法以及假定的分形动力学的存在与否,对计算出的纤维素水解堵塞参数均无影响。