Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
BMC Plant Biol. 2019 Apr 1;19(1):121. doi: 10.1186/s12870-019-1732-z.
The anionic toxicity of plants under salt stress is mainly caused by chloride (Cl). Thus Cl influx, transport and their regulatory mechanisms should be one of the most important aspects of plant salt tolerance studies, but are often sidelined by the focus on sodium (Na) toxicity and its associated adaptations. Plant chloride channels (CLCs) are transport proteins for anions including Cl and nitrate (NO), and are critical for nutrition uptake and transport, adjustment of cellular turgor, stomatal movement, signal transduction, and Cl and NO homeostasis under salt stress.
Among the eight soybean CLC genes, the tonoplast-localized c2 has uniquely different transcriptional patterns between cultivated soybean N23674 and wild soybean BB52. Using soybean hairy root transformation, we found that GsCLC-c2 over-expression contributed to Cl and NO homeostasis, and therefore conferred salt tolerance, through increasing the accumulation of Cl in the roots, thereby reducing their transportation to the shoots where most of the cellular damages occur. Also, by keeping relatively high levels of NO in the aerial part of the plant, GsCLC-c2 could reduce the Cl/NO ratio. Wild type GsCLC-c2, but not its mutants (S184P, E227V and E294G) with mutations in the conserved domains, is able to complement Saccharomyces cerevisiae △gef1 Cl sensitive phenotype. Using two-electrode voltage clamp on Xenopus laevis oocytes injected with GsCLC-c2 cRNA, we found that GsCLC-c2 transports both Cl and NO with slightly different affinity, and the affinity toward Cl was pH-independent.
This study revealed that the expression of GsCLC-c2 is induced by NaCl-stress in the root of wild soybean. The tonoplast localized GsCLC-c2 transports Cl with a higher affinity than NO in a pH-independent fashion. GsCLC-c2 probably alleviates salt stress in planta through the sequestration of excess Cl into the vacuoles of root cells and thus preventing Cl from entering the shoots where it could result in cellular damages.
植物在盐胁迫下的阴离子毒性主要是由氯离子(Cl)引起的。因此,Cl 的流入、运输及其调节机制应该是植物耐盐性研究的最重要方面之一,但由于人们关注的是钠离子(Na)毒性及其相关适应,这些机制往往被忽视。植物氯离子通道(CLCs)是阴离子(包括 Cl 和硝酸盐(NO))的转运蛋白,对营养吸收和运输、细胞膨压调节、气孔运动、信号转导以及 Cl 和 NO 平衡在盐胁迫下至关重要。
在大豆的 8 个 CLC 基因中,液泡定位的 c2 在栽培大豆 N23674 和野生大豆 BB52 之间具有独特的转录模式。利用大豆毛状根转化,我们发现 GsCLC-c2 的过表达有助于 Cl 和 NO 的平衡,并因此通过增加根中 Cl 的积累来赋予耐盐性,从而减少 Cl 向细胞损伤主要发生的地上部分的运输。此外,通过保持植物地上部分相对较高水平的 NO,GsCLC-c2 可以降低 Cl/NO 比值。野生型 GsCLC-c2(但不是其突变体 S184P、E227V 和 E294G),在保守结构域发生突变后,能够互补酿酒酵母 △gef1 Cl 敏感表型。使用 Xenopus laevis 卵母细胞中的双电极电压钳,我们发现 GsCLC-c2 同时运输 Cl 和 NO,亲和力略有不同,并且对 Cl 的亲和力与 pH 无关。
本研究表明,GsCLC-c2 的表达在野生大豆根中受到 NaCl 胁迫的诱导。定位于液泡的 GsCLC-c2 以 pH 不依赖的方式以更高的亲和力运输 Cl,而不是 NO。GsCLC-c2 可能通过将过量的 Cl 螯合到根细胞的液泡中,从而防止 Cl 进入可能导致细胞损伤的地上部分,从而在植物体内缓解盐胁迫。