Suppr超能文献

高效基于低切变流的生物实体捕获。

Efficient Low Shear Flow-based Trapping of Biological Entities.

机构信息

Optical Bio Microsystem Lab, Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Quebec, H3G 1M8, Canada.

出版信息

Sci Rep. 2019 Apr 2;9(1):5511. doi: 10.1038/s41598-019-41938-z.

Abstract

Capturing cells or biological entities is an important and challenging step toward in-vitro studies of cells under a precisely controlled microscale environment. In this work, we have developed a compact and efficient microdevice for on-chip trapping of micro-sized particles. This hydrodynamics-based trapping system allows the isolation of polystyrene micro-particles with a shorter time while inducing a less hydrodynamic deformation and stress on the particles or cells both after and before trapping. A numerical simulation was carried out to design a hydrodynamic trapping mechanism and optimize the geometric and fluidic parameters affecting the trapping efficiency of the microfluidic network. By using the finite element analysis, the velocity field, pressure field, and hydrodynamic force on the micro particles were studied. Finally, a PDMS microfluidic device was fabricated to test the device's ability to trap polystyrene microspheres. Computational fluid analysis and experimental testing showed a high trapping efficiency that is more than 90%. This microdevice can be used for single cell studies including their biological, physical and chemical characterization.

摘要

捕获细胞或生物实体是在微尺度环境下对细胞进行精确控制的体外研究的重要且具有挑战性的步骤。在这项工作中,我们开发了一种用于微芯片上微颗粒捕获的紧凑高效微器件。这种基于流体力学的捕获系统允许在较短的时间内隔离聚苯乙烯微颗粒,同时在捕获前后对颗粒或细胞产生较小的流体动力学变形和应力。进行了数值模拟以设计流体动力学捕获机制,并优化了影响微流控网络捕获效率的几何和流体参数。通过有限元分析,研究了微颗粒上的速度场、压力场和流体动力。最后,制造了一个 PDMS 微流控装置来测试该装置捕获聚苯乙烯微球的能力。计算流体分析和实验测试表明,捕获效率超过 90%。这种微器件可用于单细胞研究,包括其生物学、物理和化学特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b2/6445139/9903b706fb6c/41598_2019_41938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验