Suppr超能文献

一种适应性设计,用于通过联合建模连续重复生物标志物测量和肿瘤 I/II 期临床试验中的毒性时间,来确定最佳剂量。

An adaptive design for the identification of the optimal dose using joint modeling of continuous repeated biomarker measurements and time-to-toxicity in phase I/II clinical trials in oncology.

机构信息

CESP OncoStat, Inserm, Villejuif, France.

Université Paris-Saclay, Université Paris-Sud, UVSQ, Villejuif, France.

出版信息

Stat Methods Med Res. 2020 Feb;29(2):508-521. doi: 10.1177/0962280219837737. Epub 2019 Apr 4.

Abstract

We present a new adaptive dose-finding method, based on a joint modeling of longitudinal continuous biomarker activity measurements and time to first dose limiting toxicity, with a shared random effect. Estimation relies on likelihood that does not require approximation, an important property in the context of small sample sizes, typical of phase I/II trials. We address the important case of missing at random data that stem from unacceptable toxicity, lack of activity and rapid deterioration of phase I patients. The objective is to determine the lowest dose within a range of highly active doses, under the constraint of not exceeding the maximum tolerated dose. The maximum tolerated dose is associated to some cumulative risk of dose limiting toxicity over a predefined number of treatment cycles. Operating characteristics are explored via simulations in various scenarios.

摘要

我们提出了一种新的自适应剂量发现方法,该方法基于纵向连续生物标志物活性测量和首次剂量限制毒性时间的联合建模,具有共享的随机效应。估计依赖于不需要近似的似然,这在小样本量的情况下是一个重要的特性,在 I/II 期试验中很常见。我们解决了随机缺失数据的重要情况,这些数据源于不可接受的毒性、缺乏活性和 I 期患者病情迅速恶化。目标是在高活性剂量范围内确定最低剂量,同时不超过最大耐受剂量。最大耐受剂量与在预定义数量的治疗周期内剂量限制毒性的累积风险有关。通过在各种情况下的模拟来探索操作特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验