Suppr超能文献

一种新颖的基于通用字典的去噪方法,用于改善 3D 时荧光显微镜图像中噪声大且密集的核分割。

A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images.

机构信息

Sorbonne Université, UPMC Univ Paris 06, UJF, CNRS, IMT, NUS, Image and Pervasive Access Lab (IPAL), 138632, Singapore, Singapore.

BioInformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 138671, Singapore, Singapore.

出版信息

Sci Rep. 2019 Apr 4;9(1):5654. doi: 10.1038/s41598-019-41683-3.

Abstract

Time-lapse fluorescence microscopy is an essential technique for quantifying various characteristics of cellular processes, i.e. cell survival, migration, and differentiation. To perform high-throughput quantification of cellular processes, nuclei segmentation and tracking should be performed in an automated manner. Nevertheless, nuclei segmentation and tracking are challenging tasks due to embedded noise, intensity inhomogeneity, shape variation as well as a weak boundary of nuclei. Although several nuclei segmentation approaches have been reported in the literature, dealing with embedded noise remains the most challenging part of any segmentation algorithm. We propose a novel denoising algorithm, based on sparse coding, that can both enhance very faint and noisy nuclei signal but simultaneously detect nuclei position accurately. Furthermore our method is based on a limited number of parameters, with only one being critical, which is the approximate size of the objects of interest. We also show that our denoising method coupled with classical segmentation method works properly in the context of the most challenging cases. To evaluate the performance of the proposed method, we tested our method on two datasets from the cell tracking challenge. Across all datasets, the proposed method achieved satisfactory results with 96:96% recall for the C. elegans dataset. Besides, in the Drosophila dataset, our method achieved very high recall (99:3%).

摘要

延时荧光显微镜是量化细胞过程各种特征的重要技术,例如细胞存活、迁移和分化。为了对细胞过程进行高通量定量,应该以自动化的方式进行细胞核分割和跟踪。然而,由于嵌入噪声、强度不均匀、形状变化以及细胞核边界较弱,细胞核分割和跟踪是具有挑战性的任务。尽管文献中已经报道了几种细胞核分割方法,但处理嵌入噪声仍然是任何分割算法最具挑战性的部分。我们提出了一种基于稀疏编码的新型去噪算法,它可以增强非常微弱和嘈杂的细胞核信号,但同时可以准确地检测细胞核的位置。此外,我们的方法基于有限数量的参数,只有一个是关键的,即感兴趣对象的近似大小。我们还表明,我们的去噪方法与经典分割方法结合在最具挑战性的情况下能够正常工作。为了评估所提出方法的性能,我们在细胞跟踪挑战的两个数据集上测试了我们的方法。在所有数据集上,所提出的方法在秀丽隐杆线虫数据集上的召回率达到了 96:96%,取得了令人满意的结果。此外,在果蝇数据集上,我们的方法实现了非常高的召回率(99:3%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f08/6449358/67d6082a2318/41598_2019_41683_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验