Department of Information Technology, Uppsala University, Sweden and SciLifeLab, Uppsala, Sweden.
Center for Biosciences, Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden.
Sci Rep. 2017 Aug 10;7(1):7860. doi: 10.1038/s41598-017-07599-6.
Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created automatically using fluorescently labeled cells, perform similar to manual annotations.
深度卷积神经网络 (DCNN) 最近在许多图像分割任务中表现出色。然而,DCNN 的性能严重依赖于大量特定于问题的训练样本的可用性。在这里,我们展示了使用荧光标记细胞自动创建的真实数据训练的 DCNN 可以与手动注释相媲美。