Suppr超能文献

在高 acuity 医疗环境中启用人工智能。 注:这里的“acuity”可能是“acute”的错误拼写,原句准确意思可能是“在高急症医疗环境中启用人工智能” 。

Enabling artificial intelligence in high acuity medical environments.

作者信息

Kasparick Martin, Andersen Björn, Franke Stefan, Rockstroh Max, Golatowski Frank, Timmermann Dirk, Ingenerf Josef, Neumuth Thomas

机构信息

a Institute of Applied Microelectronics and Computer Engineering (IMD) , University of Rostock , Rostock , Germany.

b Institute of Medical Informatics , University of Lübeck , Lübeck , Germany.

出版信息

Minim Invasive Ther Allied Technol. 2019 Apr;28(2):120-126. doi: 10.1080/13645706.2019.1599957. Epub 2019 Apr 5.

Abstract

Acute patient treatment can heavily profit from AI-based assistive and decision support systems, in terms of improved patient outcome as well as increased efficiency. Yet, only very few applications have been reported because of the limited accessibility of device data due to the lack of adoption of open standards, and the complexity of regulatory/approval requirements for AI-based systems. The fragmentation of data, still being stored in isolated silos, results in limited accessibility for AI in healthcare and machine learning is complicated by the loss of semantics in data conversions. We outline a reference model that addresses the requirements of innovative AI-based research systems as well as the clinical reality. The integration of networked medical devices and Clinical Repositories based on open standards, such as IEEE 11073 SDC and HL7 FHIR, will foster novel assistance and decision support. The reference model will make point-of-care device data available for AI-based approaches. Semantic interoperability between Clinical and Research Repositories will allow correlating patient data, device data, and the patient outcome. Thus, complete workflows in high acuity environments can be analysed. Open semantic interoperability will enable the improvement of patient outcome and the increase of efficiency on a large scale and across clinical applications.

摘要

在改善患者治疗效果以及提高效率方面,急性病患者的治疗能够从基于人工智能的辅助和决策支持系统中大幅获益。然而,由于缺乏开放标准的采用导致设备数据的可获取性有限,以及基于人工智能的系统的监管/审批要求复杂,仅有极少数应用被报道。数据仍然存储在孤立的信息孤岛中,这种碎片化导致医疗保健领域中人工智能的数据可获取性受限,并且机器学习因数据转换中的语义丢失而变得复杂。我们概述了一个参考模型,该模型既满足基于人工智能的创新研究系统的要求,又符合临床实际情况。基于开放标准(如IEEE 11073 SDC和HL7 FHIR)的联网医疗设备与临床存储库的集成,将促进新型辅助和决策支持。该参考模型将使即时护理设备数据可用于基于人工智能的方法。临床存储库与研究存储库之间的语义互操作性将允许关联患者数据、设备数据和患者治疗效果。因此,可以分析高急症环境中的完整工作流程。开放的语义互操作性将能够大规模且跨临床应用地改善患者治疗效果并提高效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验