Suppr超能文献

评估利用非结构采样的时间调整短期观测值生成的长期空气污染估计值的准确性。

Assessing the accuracy of long-term air pollution estimates produced with temporally adjusted short-term observations from unstructured sampling.

机构信息

Department of Geography, University of Toronto Mississauga, Ontario, Canada.

Department of Geography, University of Toronto Mississauga, Ontario, Canada.

出版信息

J Environ Manage. 2019 Jun 15;240:249-258. doi: 10.1016/j.jenvman.2019.03.108. Epub 2019 Apr 2.

Abstract

More commonly air pollution observations are obtained with unstructured monitoring, where either a research grade monitor or low-cost sensor is irregularly relocated throughout the study area. This unstructured data is commonly observed in community science programs. Often the objective is to apply these data to estimate a long-term concentration, which is achieved using a temporal adjustment to correct for the irregular sampling. Temporal adjustments leverage information from a stationary continuous reference monitor, in combination with short-term monitoring data, to estimate long-term pollutant concentrations. We assess the performance of temporal adjustment approaches to predict long-term pollutant concentrations using data representing unstructured sampling. A series of monitoring campaigns are simulated from air pollution data obtained from regulatory monitoring networks in four different cities (Paris, France; Taipei, Taiwan; Toronto, Canada; and Vancouver, Canada) for eight different pollutants (CO, NO, NO, NO, O, PM, PM, and SO). These simulated campaigns have randomized monitoring locations and sampling times to simulate the irregular nature of crowd sourced or mobile monitoring data. The number of consecutive samples reported, and selection of the reference monitor used to adjust observations, are varied in this study. The accuracy of estimates is assessed by comparing the estimated long-term concentration to the observed long-term concentration from the complete regulatory monitoring dataset. This study found that a common temporal adjustment applied in research performed significantly worse than other adjustments including a Naïve Temporal Approach where no data adjustment occurred. Increasing the sample size improved the accuracy of estimates, which showed decreasing benefit with increased sample lengths. Lastly, controlling for land use conditions of the reference monitor did not consistently improve the long-term estimates, which suggests that land use pairing of mobile and reference monitors does not significantly influence the predictive power of temporal adjustment approaches. Temporal adjustments can reduce the error in long-term concentration estimates of air pollution using incomplete data, but this benefit cannot be assumed across all approaches, pollutants or sampling programs.

摘要

更常见的空气污染观测是通过非结构化监测获得的,在这种监测中,研究级监测器或低成本传感器会不定期地在整个研究区域内重新定位。这种非结构化数据通常在社区科学计划中观察到。通常,其目的是应用这些数据来估计长期浓度,这是通过对不规则采样进行时间调整来实现的。时间调整利用来自固定连续参考监测器的信息,结合短期监测数据,来估计长期污染物浓度。我们评估了使用代表非结构化采样的数据来预测长期污染物浓度的时间调整方法的性能。从四个不同城市(法国巴黎;中国台湾台北;加拿大多伦多;加拿大温哥华)的监管监测网络中获取的空气污染数据模拟了一系列监测活动,针对八种不同的污染物(CO、NO、NO、NO、O、PM、PM 和 SO)。这些模拟的监测活动具有随机监测地点和采样时间,以模拟众包或移动监测数据的不规则性质。在本研究中,报告的连续样本数量和用于调整观测值的参考监测器的选择有所不同。通过将估计的长期浓度与完整监管监测数据集的观测长期浓度进行比较来评估估计的准确性。本研究发现,在研究中应用的一种常见的时间调整方法的准确性明显低于其他调整方法,包括没有发生数据调整的 Naive Temporal Approach。增加样本量可以提高估计的准确性,随着样本长度的增加,准确性的提高逐渐减少。最后,控制参考监测器的土地利用条件并没有一致地改善长期估计,这表明移动监测器和参考监测器的土地利用配对不会显著影响时间调整方法的预测能力。时间调整可以使用不完整的数据减少空气污染长期浓度估计的误差,但不能假设所有方法、污染物或采样计划都有此好处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验