Chastko Karl, Adams Matthew
Department of Geography, University of Toronto Mississauga, Ontario, Canada.
MethodsX. 2019 Jun 12;6:1489-1495. doi: 10.1016/j.mex.2019.06.005. eCollection 2019.
Mobile air pollution monitoring is an effective means of collecting spatially and temporally diverse air pollution samples. These observations are often used to predict long-term air pollution concentrations using temporal adjustments based on the time-series of a fixed location monitor. Temporal adjustments are required because the time-series is often incomplete at each spatial location. We describe a method-fusion temporal adjustment that has been demonstrated to improve the accuracy of long-term estimates from incomplete time-series data. Our adjustment approach combines the techniques of using a log transformation to modify the air pollution samples to a near normal distribution and incorporates the long-term median of a reference monitor to mediate the effects of estimate inflation created by outliers in the data. We demonstrate the approach with hourly Nitrogen Dioxide observations from Paris, France in 2016. Method-Fusion Benefits: •Log transformations control for estimate inflation created by log normally distributed data.•Adjusting data with the long-term median, rather than the mean, controls for estimate inflation.•Produces more accurate long-term estimates than other adjustments independent of the pollutant being estimated.
移动空气污染监测是收集时空多样化空气污染样本的有效手段。这些观测数据通常用于基于固定地点监测器的时间序列进行时间调整,以预测长期空气污染浓度。之所以需要进行时间调整,是因为每个空间位置的时间序列往往不完整。我们描述了一种方法融合时间调整方法,该方法已被证明可提高从不完整时间序列数据得出的长期估计的准确性。我们的调整方法结合了使用对数变换将空气污染样本修改为近似正态分布的技术,并纳入了参考监测器的长期中位数,以调节数据中异常值造成的估计值膨胀的影响。我们用2016年法国巴黎每小时的二氧化氮观测数据展示了该方法。方法融合的优点:•对数变换可控制对数正态分布数据造成的估计值膨胀。•用长期中位数而非均值调整数据,可控制估计值膨胀。•与其他调整方法相比,无论所估计的污染物是什么,该方法都能得出更准确的长期估计值。