Suppr超能文献

单个纳米结构锥体产生的全半导体增强高次谐波生成。

All semiconductor enhanced high-harmonic generation from a single nanostructured cone.

作者信息

Franz Dominik, Kaassamani Shatha, Gauthier David, Nicolas Rana, Kholodtsova Maria, Douillard Ludovic, Gomes Jean-Thomas, Lavoute Laure, Gaponov Dmitry, Ducros Nicolas, Février Sebastien, Biegert Jens, Shi Liping, Kovacev Milutin, Boutu Willem, Merdji Hamed

机构信息

LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Saclay, 91191, Gif sur Yvette, France.

SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Saclay, 91191, Gif sur Yvette, France.

出版信息

Sci Rep. 2019 Apr 5;9(1):5663. doi: 10.1038/s41598-019-41642-y.

Abstract

The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source. The strong field regime is reached by confining the electric field from a few nanojoules femtosecond laser in a single 3D semiconductor waveguide. We reveal a strong competition between enhancement of coherent harmonics and incoherent fluorescence favored by excitonic processes. However, far from the band edge, clear enhancement of the harmonic emission is reported with a robust sustainability offering a compact nanosource for applications. We illustrate the potential of our harmonic nano-device by performing a coherent diffractive imaging experiment. Ultra-compact UV/X-ray nanoprobes are foreseen to have other applications such as petahertz electronics, nano-tomography or nano-medicine.

摘要

纳米尺度下非线性现象的增强与控制在科学和工业领域有着广泛应用。在这些现象中,固体中的高次谐波产生是实现下一代太赫兹光电器件或紧凑型全固态极紫外光源的近期研究重点。在此,我们报告首个纳米级高谐波源的实现。通过将来自几纳焦耳飞秒激光的电场限制在单个三维半导体波导中,达到了强场状态。我们揭示了相干谐波增强与激子过程所青睐的非相干荧光之间的强烈竞争。然而,在远离带边的情况下,报告显示谐波发射有明显增强,且具有强大的可持续性,为应用提供了一个紧凑型纳米源。我们通过进行相干衍射成像实验展示了我们的谐波纳米器件的潜力。超紧凑型紫外/ X射线纳米探针有望用于其他应用,如太赫兹电子学、纳米断层扫描或纳米医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576f/6450872/5de33fb9ace2/41598_2019_41642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验