Suppr超能文献

从运动单位放电时序预测腕部运动学,用于主动假肢控制。

Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.

机构信息

Institute of Neurorehabilitation Systems, University Medical Center Göttingen, Göttingen, Germany.

Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.

出版信息

J Neuroeng Rehabil. 2019 Apr 5;16(1):47. doi: 10.1186/s12984-019-0516-x.

Abstract

BACKGROUND

Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.

METHODS

We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.

RESULTS

The regression approach using neural features outperformed regression on classic global EMG features (average R for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).

CONCLUSIONS

These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.

摘要

背景

目前主动假肢的肌电控制算法将干扰肌电图信号的时频域特征映射到假肢命令中。通过这种方法,只有肌电图的可用信息内容的一小部分被使用,并且得到的控制不能满足大多数用户的需求。在这项研究中,我们从高密度表面肌电图的分解中识别出运动单位放电时序,从而预测三个自由度的腕关节角度。

方法

我们记录了六位健康个体和一位肢体缺失患者的腕部运动学和高密度表面肌电图信号,他们以三种不同的速度进行了三个自由度的腕部运动。我们比较了线性回归的性能,以预测观察到的个体腕关节角度,无论是来自干扰肌电图的传统时域特征,还是来自肌电图分解得到的运动单位放电时序(我们称之为神经特征)。此外,我们提出并测试了一种简单的基于模型的降维方法,该方法基于生理上的假设,即运动单位的放电时序部分相关。

结果

使用神经特征的回归方法优于经典全局肌电特征的回归方法(神经特征的平均 R 分别为 0.77 和 0.64,适用于健康个体和患者;对于时域特征,平均 R 分别为 0.70 和 0.52)。

结论

这些结果表明,从肌电图分解中提取的神经信息的使用可以推进假肢控制的人机界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7554/6451263/139a835d7128/12984_2019_516_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验