Suppr超能文献

通过深度神经网络从多回波 GRE 图像合成 T1 加权 MPRAGE 图像。

Synthesizing T1 weighted MPRAGE image from multi echo GRE images via deep neural network.

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea.

Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 065-591, Republic of Korea.

出版信息

Magn Reson Imaging. 2019 Dec;64:13-20. doi: 10.1016/j.mri.2019.04.002. Epub 2019 Apr 4.

Abstract

For quantitative neuroimaging studies using multi-echo gradient echo (mGRE) images, additional T-weighted magnetization prepared rapid gradient echo (MPRAGE) images are often acquired to supplement the insufficient morphometric information of mGRE for tissue segmentation which require lengthened scan time and additional processing such as image registration. This study investigated the feasibility of generating synthetic MPRAGE images from mGRE images using a deep convolutional neural network. Tissue segmentation results derived from the synthetic MPRAGE showed good agreement with those from actual MPRAGE (DSC = 0.882 ± 0.017). There was no statistically significant difference between the mean susceptibility values obtained with the regions of interest from synthetic and actual MPRAGEs and high correlation between the two measurements.

摘要

对于使用多回波梯度回波(mGRE)图像的定量神经影像学研究,通常会额外采集 T1 加权磁化准备快速梯度回波(MPRAGE)图像,以补充 mGRE 对组织分割的形态计量信息不足,这需要延长扫描时间并进行额外的处理,例如图像配准。本研究探讨了使用深度卷积神经网络从 mGRE 图像生成合成 MPRAGE 图像的可行性。从合成 MPRAGE 中得出的组织分割结果与实际 MPRAGE 的结果具有很好的一致性(DSC=0.882±0.017)。从合成和实际 MPRAGE 的感兴趣区域获得的平均磁化率值之间没有统计学上的显著差异,并且这两种测量之间具有高度相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验