Suppr超能文献

基于深度神经网络重建的高加速 3D MPRAGE 在儿童和青年大脑成像中的应用。

Highly accelerated 3D MPRAGE using deep neural network-based reconstruction for brain imaging in children and young adults.

机构信息

AIRS Medical, Seoul, Republic of Korea.

Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea, 03312.

出版信息

Eur Radiol. 2022 Aug;32(8):5468-5479. doi: 10.1007/s00330-022-08687-6. Epub 2022 Mar 22.

Abstract

OBJECTIVES

This study aimed to accelerate the 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence for brain imaging through the deep neural network (DNN).

METHODS

This retrospective study used the k-space data of 240 scans (160 for the training set, mean ± standard deviation age, 93 ± 80 months, 94 males; 80 for the test set, 106 ± 83 months, 44 males) of conventional MPRAGE (C-MPRAGE) and 102 scans (77 ± 74 months, 52 males) of both C-MPRAGE and accelerated MPRAGE. All scans were acquired with 3T scanners. DNN was developed with simulated-acceleration data generated by under-sampling. Quantitative error metrics were compared between images reconstructed with DNN, GRAPPA, and E-SPIRIT using the paired t-test. Qualitative image quality was compared between C-MPRAGE and accelerated MPRAGE reconstructed with DNN (DNN-MPRAGE) by two readers. Lesions were segmented and the agreement between C-MPRAGE and DNN-MPRAGE was assessed using linear regression.

RESULTS

Accelerated MPRAGE reduced scan times by 38% compared to C-MPRAGE (142 s vs. 320 s). For quantitative error metrics, DNN showed better performance than GRAPPA and E-SPIRIT (p < 0.001). For qualitative evaluation, overall image quality of DNN-MPRAGE was comparable (p > 0.999) or better (p = 0.025) than C-MPRAGE, depending on the reader. Pixelation was reduced in DNN-MPRAGE (p < 0.001). Other qualitative parameters were comparable (p > 0.05). Lesions in C-MPRAGE and DNN-MPRAGE showed good agreement for the dice similarity coefficient (= 0.68) and linear regression (R = 0.97; p < 0.001).

CONCLUSIONS

DNN-MPRAGE reduced acquisition time by 38% and revealed comparable image quality to C-MPRAGE.

KEY POINTS

• DNN-MPRAGE reduced acquisition times by 38%. • DNN-MPRAGE outperformed conventional reconstruction on accelerated scans (SSIM of DNN-MPRAGE = 0.96, GRAPPA = 0.43, E-SPIRIT = 0.88; p < 0.001). • Compared to C-MPRAGE scans, DNN-MPRAGE showed improved mean scores for overall image quality (2.46 vs. 2.52; p < 0.001) or comparable perceived SNR (2.56 vs. 2.58; p = 0.08).

摘要

目的

本研究旨在通过深度神经网络(DNN)加速磁共振成像 3D 磁化准备快速梯度回波(MPRAGE)序列。

方法

本回顾性研究使用了常规 MPRAGE(C-MPRAGE)240 次扫描(160 次用于训练集,平均年龄 ± 标准差为 93 ± 80 个月,94 名男性;80 次用于测试集,平均年龄为 106 ± 83 个月,44 名男性)和 102 次 C-MPRAGE 和加速 MPRAGE 扫描的 k 空间数据。所有扫描均在 3T 扫描仪上进行。DNN 使用欠采样生成的模拟加速数据进行开发。使用配对 t 检验比较使用 DNN、GRAPPA 和 E-SPIRIT 重建的图像之间的定量误差指标。两名读者使用 DNN(DNN-MPRAGE)比较 C-MPRAGE 和加速 MPRAGE 重建的图像的定性图像质量。使用线性回归评估病变的分割和 C-MPRAGE 与 DNN-MPRAGE 的一致性。

结果

与 C-MPRAGE 相比,加速 MPRAGE 将扫描时间缩短了 38%(142 秒与 320 秒)。对于定量误差指标,DNN 表现优于 GRAPPA 和 E-SPIRIT(p < 0.001)。对于定性评估,根据读者的不同,DNN-MPRAGE 的整体图像质量可与 C-MPRAGE 相媲美(p > 0.999)或更好(p = 0.025)。DNN-MPRAGE 减少了图像的伪影(p < 0.001)。其他定性参数无差异(p > 0.05)。C-MPRAGE 和 DNN-MPRAGE 中的病变在骰子相似系数(= 0.68)和线性回归(R = 0.97;p < 0.001)方面具有良好的一致性。

结论

DNN-MPRAGE 将采集时间缩短了 38%,并呈现出与 C-MPRAGE 相当的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验