AIRS Medical, Seoul, Republic of Korea.
Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea, 03312.
Eur Radiol. 2022 Aug;32(8):5468-5479. doi: 10.1007/s00330-022-08687-6. Epub 2022 Mar 22.
This study aimed to accelerate the 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence for brain imaging through the deep neural network (DNN).
This retrospective study used the k-space data of 240 scans (160 for the training set, mean ± standard deviation age, 93 ± 80 months, 94 males; 80 for the test set, 106 ± 83 months, 44 males) of conventional MPRAGE (C-MPRAGE) and 102 scans (77 ± 74 months, 52 males) of both C-MPRAGE and accelerated MPRAGE. All scans were acquired with 3T scanners. DNN was developed with simulated-acceleration data generated by under-sampling. Quantitative error metrics were compared between images reconstructed with DNN, GRAPPA, and E-SPIRIT using the paired t-test. Qualitative image quality was compared between C-MPRAGE and accelerated MPRAGE reconstructed with DNN (DNN-MPRAGE) by two readers. Lesions were segmented and the agreement between C-MPRAGE and DNN-MPRAGE was assessed using linear regression.
Accelerated MPRAGE reduced scan times by 38% compared to C-MPRAGE (142 s vs. 320 s). For quantitative error metrics, DNN showed better performance than GRAPPA and E-SPIRIT (p < 0.001). For qualitative evaluation, overall image quality of DNN-MPRAGE was comparable (p > 0.999) or better (p = 0.025) than C-MPRAGE, depending on the reader. Pixelation was reduced in DNN-MPRAGE (p < 0.001). Other qualitative parameters were comparable (p > 0.05). Lesions in C-MPRAGE and DNN-MPRAGE showed good agreement for the dice similarity coefficient (= 0.68) and linear regression (R = 0.97; p < 0.001).
DNN-MPRAGE reduced acquisition time by 38% and revealed comparable image quality to C-MPRAGE.
• DNN-MPRAGE reduced acquisition times by 38%. • DNN-MPRAGE outperformed conventional reconstruction on accelerated scans (SSIM of DNN-MPRAGE = 0.96, GRAPPA = 0.43, E-SPIRIT = 0.88; p < 0.001). • Compared to C-MPRAGE scans, DNN-MPRAGE showed improved mean scores for overall image quality (2.46 vs. 2.52; p < 0.001) or comparable perceived SNR (2.56 vs. 2.58; p = 0.08).
本研究旨在通过深度神经网络(DNN)加速磁共振成像 3D 磁化准备快速梯度回波(MPRAGE)序列。
本回顾性研究使用了常规 MPRAGE(C-MPRAGE)240 次扫描(160 次用于训练集,平均年龄 ± 标准差为 93 ± 80 个月,94 名男性;80 次用于测试集,平均年龄为 106 ± 83 个月,44 名男性)和 102 次 C-MPRAGE 和加速 MPRAGE 扫描的 k 空间数据。所有扫描均在 3T 扫描仪上进行。DNN 使用欠采样生成的模拟加速数据进行开发。使用配对 t 检验比较使用 DNN、GRAPPA 和 E-SPIRIT 重建的图像之间的定量误差指标。两名读者使用 DNN(DNN-MPRAGE)比较 C-MPRAGE 和加速 MPRAGE 重建的图像的定性图像质量。使用线性回归评估病变的分割和 C-MPRAGE 与 DNN-MPRAGE 的一致性。
与 C-MPRAGE 相比,加速 MPRAGE 将扫描时间缩短了 38%(142 秒与 320 秒)。对于定量误差指标,DNN 表现优于 GRAPPA 和 E-SPIRIT(p < 0.001)。对于定性评估,根据读者的不同,DNN-MPRAGE 的整体图像质量可与 C-MPRAGE 相媲美(p > 0.999)或更好(p = 0.025)。DNN-MPRAGE 减少了图像的伪影(p < 0.001)。其他定性参数无差异(p > 0.05)。C-MPRAGE 和 DNN-MPRAGE 中的病变在骰子相似系数(= 0.68)和线性回归(R = 0.97;p < 0.001)方面具有良好的一致性。
DNN-MPRAGE 将采集时间缩短了 38%,并呈现出与 C-MPRAGE 相当的图像质量。