School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
EBioMedicine. 2019 May;43:435-446. doi: 10.1016/j.ebiom.2019.03.081. Epub 2019 Apr 5.
Sulfate availability is crucial for the sulfonation of brain extracellular matrix constituents, membrane phospholipids, neurosteroids, and neurotransmitters. Observations from humans and mouse models suggest dysregulated sulfate levels may be associated with neurodevelopmental disorders, such as autism. However, the cellular mechanisms governing sulfate homeostasis within the developing or adult brain are not fully understood.
We utilized a mouse model with a conditional allele for the sulfate transporter Slc13a4, and a battery of behavioral tests, to assess the effects of disrupted sulfate transport on maternal behaviors, social interactions, memory, olfaction, exploratory behavior, anxiety, stress, and metabolism. Immunohistochemistry examined neurogenesis within the stem cells niches.
The sulfate transporter Slc13a4 plays a critical role in postnatal brain development. Slc13a4 haploinsufficiency results in significant behavioral phenotypes in adult mice, notably impairments in social interaction and long-term memory, as well as increased neurogenesis in the subventricular stem cell niche. Conditional gene deletion shows these phenotypes have a developmental origin, and that full biallelic expression of Slc13a4 is required only in postnatal development. Furthermore, administration of N-acetylcysteine (NAC) within postnatal window P14-P30 prevents the onset of phenotypes in adult Slc13a4 mice.
Slc13a4 haploinsufficient mice highlight a requirement for adequate sulfate supply in postnatal development for the maturation of important social interaction and memory pathways. With evidence suggesting dysregulated sulfate biology may be a feature of some neurodevelopmental disorders, the utility of sulfate levels as a biomarker of disease and NAC administration as an early preventative measure should be further explored.
硫酸盐的可用性对于脑细胞外基质成分、膜磷脂、神经甾体和神经递质的磺化作用至关重要。人类和小鼠模型的观察结果表明,硫酸盐水平的失调可能与神经发育障碍有关,如自闭症。然而,在发育或成年大脑中调节硫酸盐稳态的细胞机制尚未完全了解。
我们利用 Slc13a4 硫酸盐转运体条件性等位基因的小鼠模型和一系列行为测试,评估破坏硫酸盐转运对母性行为、社交互动、记忆、嗅觉、探索行为、焦虑、应激和代谢的影响。免疫组织化学检查了干细胞龛中的神经发生。
硫酸盐转运体 Slc13a4 在出生后大脑发育中起着关键作用。Slc13a4 杂合不足导致成年小鼠出现显著的行为表型,特别是社交互动和长期记忆受损,以及侧脑室干细胞龛中的神经发生增加。条件性基因缺失表明这些表型具有发育起源,并且 Slc13a4 的完全双等位基因表达仅在出生后发育中是必需的。此外,在 P14-P30 出生后窗内给予 N-乙酰半胱氨酸 (NAC) 可预防成年 Slc13a4 小鼠表型的发生。
Slc13a4 杂合不足小鼠强调了在出生后发育过程中需要足够的硫酸盐供应,以成熟重要的社交互动和记忆途径。有证据表明,硫酸盐生物学的失调可能是一些神经发育障碍的特征,因此硫酸盐水平作为疾病的生物标志物和 NAC 给药作为早期预防措施的效用应该进一步探索。