Suppr超能文献

通过混合模型利用大豆冠层覆盖图像和基因型信息进行基因组预测

Genomic Prediction Using Canopy Coverage Image and Genotypic Information in Soybean via a Hybrid Model.

作者信息

Howard Reka, Jarquin Diego

机构信息

Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA.

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.

出版信息

Evol Bioinform Online. 2019 Mar 29;15:1176934319840026. doi: 10.1177/1176934319840026. eCollection 2019.

Abstract

Prediction techniques are important in plant breeding as they provide a tool for selection that is more efficient and economical than traditional phenotypic and pedigree based selection. The conventional genomic prediction models include molecular marker information to predict the phenotype. With the development of new phenomics techniques we have the opportunity to collect image data on the plants, and extend the traditional genomic prediction models where we incorporate diverse set of information collected on the plants. In our research, we developed a hybrid matrix model that incorporates molecular marker and canopy coverage information as a weighted linear combination to predict grain yield for the soybean nested association mapping (SoyNAM) panel. To obtain the testing and training sets, we clustered the individuals based on their marker and canopy information using 2 different clustering techniques, and we compared 5 different cross-validation schemes. The results showed that the predictive ability of the models was the highest when both the canopy and marker information was included, and it was the lowest when only the canopy information was included.

摘要

预测技术在植物育种中很重要,因为它们提供了一种选择工具,比传统的基于表型和系谱的选择更高效、更经济。传统的基因组预测模型包括分子标记信息来预测表型。随着新的表型组学技术的发展,我们有机会收集植物的图像数据,并扩展传统的基因组预测模型,在其中纳入从植物上收集的各种信息。在我们的研究中,我们开发了一种混合矩阵模型,该模型将分子标记和冠层覆盖信息作为加权线性组合纳入,以预测大豆嵌套关联作图(SoyNAM)群体的籽粒产量。为了获得测试集和训练集,我们使用两种不同的聚类技术根据个体的标记和冠层信息对个体进行聚类,并比较了五种不同的交叉验证方案。结果表明,当同时包含冠层和标记信息时,模型的预测能力最高,而仅包含冠层信息时预测能力最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f96e/6442071/84d4e0ba2f88/10.1177_1176934319840026-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验