基因组选择在植物育种中的应用:方法、模型与展望。

Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

机构信息

International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico.

Colegio de Postgraduados, Montecillo, Texcoco, 56230, Edo. de Mexico, Mexico.

出版信息

Trends Plant Sci. 2017 Nov;22(11):961-975. doi: 10.1016/j.tplants.2017.08.011. Epub 2017 Sep 28.

Abstract

Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding.

摘要

基因组选择(GS)促进了优异基因型的快速选择,并加速了育种周期。在这篇综述中,我们讨论了 GS 和基因组辅助预测(GP)的历史、原理和基础,以及 GP 模型的遗传学和统计复杂性,包括基因组基因型×环境(G×E)互作。我们还基于随机交叉验证,检查了两种谷类作物和两种豆科作物的 GP 模型和方法的准确性。GS 在玉米育种中的应用已经显示出明显的遗传增益。基于 GP 结果,我们推测 GS 在种质改良(即预育种)计划中如何加速基因从基因库资源到优良品系的流动。高光谱图像技术的最新进展可以与 GS 和系谱辅助育种相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索