Suppr超能文献

利用基因组、系谱及其与环境的相互作用预测小麦新品系在新环境中的表现。

Joint Use of Genome, Pedigree, and Their Interaction with Environment for Predicting the Performance of Wheat Lines in New Environments.

机构信息

University of Nebraska - Lincoln, Lincoln NE, 68583, USA.

University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

G3 (Bethesda). 2019 Sep 4;9(9):2925-2934. doi: 10.1534/g3.119.400508.

Abstract

Genome-enabled prediction plays an essential role in wheat breeding because it has the potential to increase the rate of genetic gain relative to traditional phenotypic and pedigree-based selection. Since the performance of wheat lines is highly influenced by environmental stimuli, it is important to accurately model the environment and its interaction with genetic factors in prediction models. Arguably, multi-environmental best linear unbiased prediction (BLUP) may deliver better prediction performance than single-environment genomic BLUP. We evaluated pedigree and genome-based prediction using 35,403 wheat lines from the Global Wheat Breeding Program of the International Maize and Wheat Improvement Center (CIMMYT). We implemented eight statistical models that included genome-wide molecular marker and pedigree information as prediction inputs in two different validation schemes. All models included main effects, but some considered interactions between the different types of pedigree and genomic covariates via Hadamard products of similarity kernels. Pedigree models always gave better prediction of new lines in observed environments than genome-based models when only main effects were fitted. However, for all traits, the highest predictive abilities were obtained when interactions between pedigree, genomes, and environments were included. When new lines were predicted in unobserved environments, in almost all trait/year combinations, the marker main-effects model was the best. These results provide strong evidence that the different sources of genetic information (molecular markers and pedigree) are not equally useful at different stages of the breeding pipelines, and can be employed differentially to improve the design and prediction of the outcome of future breeding programs.

摘要

基因组预测在小麦育种中起着至关重要的作用,因为它有可能相对于传统的表型和系谱选择提高遗传增益的速度。由于小麦品系的表现受环境刺激的高度影响,因此在预测模型中准确模拟环境及其与遗传因素的相互作用非常重要。可以说,多环境最佳线性无偏预测(BLUP)可能比单环境基因组 BLUP 提供更好的预测性能。我们使用来自国际玉米和小麦改良中心(CIMMYT)全球小麦育种计划的 35403 条小麦品系评估了系谱和基于基因组的预测。我们实施了八项统计模型,这些模型将全基因组分子标记和系谱信息作为预测输入,在两种不同的验证方案中使用。所有模型都包含主要效应,但有些模型通过相似核的Hadamard 乘积考虑了系谱和基因组协变量之间的相互作用。当仅拟合主要效应时,系谱模型总是比基于基因组的模型更好地预测观测环境中的新品系。然而,对于所有性状,当包括系谱、基因组和环境之间的相互作用时,获得了最高的预测能力。当在未观测到的环境中预测新的品系时,在几乎所有性状/年份组合中,标记主效应模型都是最好的。这些结果有力地表明,不同的遗传信息来源(分子标记和系谱)在育种管道的不同阶段并非同等有用,可以有区别地利用它们来改进未来育种计划的设计和预测。

相似文献

8
Genomic prediction in CIMMYT maize and wheat breeding programs.CIMMYT 玉米和小麦育种计划中的基因组预测。
Heredity (Edinb). 2014 Jan;112(1):48-60. doi: 10.1038/hdy.2013.16. Epub 2013 Apr 10.

引用本文的文献

1
Enhancing wheat genomic prediction by a hybrid kernel approach.通过混合核方法增强小麦基因组预测
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.
6
Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review.杂种优势与杂交作物育种:多学科综述
Front Genet. 2021 Feb 24;12:643761. doi: 10.3389/fgene.2021.643761. eCollection 2021.

本文引用的文献

5
Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.基因组选择在植物育种中的应用:方法、模型与展望。
Trends Plant Sci. 2017 Nov;22(11):961-975. doi: 10.1016/j.tplants.2017.08.011. Epub 2017 Sep 28.
9
Genomic Prediction of Gene Bank Wheat Landraces.基因库中小麦地方品种的基因组预测
G3 (Bethesda). 2016 Jul 7;6(7):1819-34. doi: 10.1534/g3.116.029637.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验