Suppr超能文献

具有分子间氢键的三元体系:高性能非富勒烯有机太阳能电池的有效策略。

Ternary System with Intermolecular Hydrogen Bond: Efficient Strategy to High-Performance Nonfullerene Organic Solar Cells.

作者信息

Li Xinrui, Du Xiaoyang, Lin Hui, Kong Xiao, Li Lijuan, Zhou Lei, Zheng Caijun, Tao Silu

机构信息

School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu 610054 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 May 1;11(17):15598-15606. doi: 10.1021/acsami.9b02121. Epub 2019 Apr 17.

Abstract

To boost organic solar cell (OSC) performance, numerous approaches have been developed, such as synthesizing new materials, using post-annealing (thermal or solvent annealing) or fabricating ternary devices. The ternary strategy is usually used as an uncomplicated and effective way, but how to choose the third component and the effect of interactions between materials on OSC performance still need to be clarified. Herein, we proposed a new finding that the carbonyl group of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b'] dithiophene (ITIC) end groups can react with the dye molecule SR197 to form the N-H···O noncovalent interaction. The existence of intermolecular hydrogen bonds was confirmed using Fourier transform infrared spectra and two-dimensional proton nuclear magnetic resonance. The power conversion efficiency (PCE) was improved to 10.29% via doping SR197 into blends of PTB7-Th:ITIC, which exhibited a huge enhancement of approximately 30% compared with the binary OSCs (PCE = 7.92%). The ternary OSCs of PBDB-T:SR197:ITIC could also achieve high PCE (11.03%) without post-thermal or solvent annealing. Transmission electron microscopy and grazing-incidence wide-angle X-ray scattering showed the optimized morphology and enhanced crystallinity of ternary systems, which is facilitated to exciton dissociation and charge transmission. These conclusions mean that the H-bonding strategy is an effective way for selecting the third component and could achieve high-performance OSCs.

摘要

为提高有机太阳能电池(OSC)的性能,人们已开发出多种方法,如合成新材料、采用后退火处理(热退火或溶剂退火)或制备三元器件。三元策略通常被用作一种简单有效的方法,但如何选择第三组分以及材料间相互作用对OSC性能的影响仍有待阐明。在此,我们提出了一项新发现,即3,9-双(2-亚甲基-(3-(1,1-二氰基亚甲基)-茚满酮))-5,5,11,11-四(4-己基苯基)-二噻吩并[2,3-d:2',3'-d']-s-茚并[1,2-b:5,6-b']二噻吩(ITIC)端基的羰基可与染料分子SR197反应形成N-H···O非共价相互作用。利用傅里叶变换红外光谱和二维质子核磁共振证实了分子间氢键的存在。通过将SR197掺杂到PTB7-Th:ITIC共混物中,功率转换效率(PCE)提高到了10.29%,与二元有机太阳能电池(PCE = 7.92%)相比,提高了约30%。PBDB-T:SR197:ITIC的三元有机太阳能电池在未经热退火或溶剂退火的情况下也能实现较高的PCE(11.03%)。透射电子显微镜和掠入射广角X射线散射表明三元体系具有优化的形貌和增强的结晶度,这有利于激子解离和电荷传输。这些结论意味着氢键策略是选择第三组分的有效方法,并且能够实现高性能的有机太阳能电池。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验